--- datasets: - PKU-Alignment/PKU-SafeRLHF language: - en tags: - reinforcement-learning-from-human-feedback - reinforcement-learning - beaver - safety - llama - ai-safety - deepspeed - rlhf - alpaca library_name: safe-rlhf --- # 🦫 Beaver's Cost Model ## Model Details The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. - **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. - **Model Type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license. - **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). ## Model Sources - **Repository:** - **Beaver:** - **Dataset:** - **Reward Model:** - **Cost Model:** - **Dataset Paper:** - **Paper:** ## How to Use the Cost Model ```python import torch from transformers import AutoTokenizer from safe_rlhf.models import AutoModelForScore model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v3.0-cost', torch_dtype=torch.bfloat16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v3.0-cost') input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' input_ids = tokenizer(input, return_tensors='pt') output = model(**input_ids) print(output) # ScoreModelOutput( # scores=tensor([[[ 3.4844], # [ 0.9414], # [ 1.9766], # [ 0.9688], # [ 1.4219], # [ 0.5781], # [ 0.7500], # [ 0.3516], # [-0.2305], # [-0.6055], # [-1.0625], # [-1.1875], # [-0.5820], # [ 0.0182], # [-1.0000], # [ 0.1279], # [-0.5820], # [-0.3691], # [ 0.5430], # [-0.2266], # [ 0.6797], # [ 1.0938], # [ 0.7188], # [ 0.6797], # [ 0.3613], # [ 0.1416], # [ 0.4238], # [ 0.4023]]], grad_fn=), # end_scores=tensor([[0.4023]], grad_fn=), # last_hidden_state=tensor([[[-0.2832, -0.0139, -0.1904, ..., 0.4141, -0.5859, -1.2734], # [ 0.2168, -1.1953, -0.4707, ..., -0.0806, 0.2500, 0.6016], # [ 0.5078, 0.2334, 0.1348, ..., -0.1416, -0.1699, -0.3008], # ..., # [ 0.6328, -0.0108, -0.7188, ..., -0.8828, 0.2812, 0.5352], # [ 0.4434, 0.3281, -0.1245, ..., -0.7812, 0.7734, 0.8164], # [ 0.5078, 0.2637, 0.5508, ..., 0.3477, 1.5625, 0.5547]]], # dtype=torch.bfloat16, grad_fn=), # end_last_hidden_state=tensor([[0.5078, 0.2637, 0.5508, ..., 0.3477, 1.5625, 0.5547]], # dtype=torch.bfloat16, grad_fn=), # end_index=tensor([27]) # ) ```