diff --git "a/modeling_edgellm.py" "b/modeling_edgellm.py" new file mode 100644--- /dev/null +++ "b/modeling_edgellm.py" @@ -0,0 +1,2631 @@ +# coding=utf-8 +# Copyright 2024 The EdgeLLM team and The HuggingFace Inc. All rights reserved. +# +# This code is based on Alibaba's Qwen2 library, DeepSeek-AI's deepseekv2 +# libraryEleutherAI's GPT-NeoX library and the GPT-NeoX and OPT implementations +# in this library. It has been modified from its original forms to accommodate +# minor architectural differences compared to GPT-NeoX and OPT used by the Meta +# AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch EdgeLLM model.""" + +import inspect +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache, StaticCache +from transformers.modeling_attn_mask_utils import ( + AttentionMaskConverter, + _prepare_4d_attention_mask, + _prepare_4d_causal_attention_mask +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_edgellm import EdgellmConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) + + +logger = logging.get_logger(__name__) + + +_CHECKPOINT_FOR_DOC = "Edgellm/Edgellm-7B-beta" +_CONFIG_FOR_DOC = "EdgellmConfig" + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + +class IdentityOperation(nn.Module): + def __init__(self): + super(IdentityOperation, self).__init__() + + def forward(self, x): + return x +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Edgellm +class EdgellmRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + EdgellmRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + # return self.weight * hidden_states.to(input_dtype) + return (self.weight.to(torch.float32) * hidden_states).to(input_dtype) + + +# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Edgellm +class EdgellmRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=4096, base=100000, device=None): + super().__init__() + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +class EdgellmLinearScalingRotaryEmbedding(EdgellmRotaryEmbedding): + """EdgellmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Edgellm +class EdgellmDynamicNTKScalingRotaryEmbedding(EdgellmRotaryEmbedding): + """EdgellmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) + - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / ( + base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim( + num_rotations, dim, base=10000, max_position_embeddings=2048 +): + return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( + 2 * math.log(base) + ) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range( + low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 +): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) + ) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) + ) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class EdgellmYarnRotaryEmbedding(EdgellmRotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / ( + self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + freq_inter = 1.0 / ( + self.scaling_factor + * self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32 + ) + inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) + / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) + ) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer( + "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False + ) + self.register_buffer( + "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + + +# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Edgellm +class EdgellmMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + def squared_relu(x): + return torch.pow(F.relu(x), 2) + self.act_fn = squared_relu + + def forward(self, hidden_state): + return self.down_proj(self.act_fn(self.up_proj(hidden_state))) + + + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# class EdgellmAttention(nn.Module): +# """ +# Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer +# and "Generating Long Sequences with Sparse Transformers". +# """ + +# def __init__(self, config: EdgellmConfig, layer_idx: Optional[int] = None): +# super().__init__() +# self.config = config +# self.layer_idx = layer_idx +# if layer_idx is None: +# logger.warning_once( +# f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " +# "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " +# "when creating this class." +# ) + +# self.hidden_size = config.hidden_size +# self.num_heads = config.num_attention_heads +# self.head_dim = self.hidden_size // self.num_heads +# self.num_key_value_heads = config.num_key_value_heads +# self.num_key_value_groups = self.num_heads // self.num_key_value_heads +# self.max_position_embeddings = config.max_position_embeddings +# self.rope_theta = config.rope_theta +# self.is_causal = True +# self.attention_dropout = config.attention_dropout + +# if (self.head_dim * self.num_heads) != self.hidden_size: +# raise ValueError( +# f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" +# f" and `num_heads`: {self.num_heads})." +# ) +# self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) +# self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) +# self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) +# self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + +# self.rotary_emb = EdgellmRotaryEmbedding( +# self.head_dim, +# max_position_embeddings=self.max_position_embeddings, +# base=self.rope_theta, +# ) + +# def forward( +# self, +# hidden_states: torch.Tensor, +# attention_mask: Optional[torch.Tensor] = None, +# position_ids: Optional[torch.LongTensor] = None, +# past_key_value: Optional[Cache] = None, +# output_attentions: bool = False, +# use_cache: bool = False, +# cache_position: Optional[torch.LongTensor] = None, +# ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: +# bsz, q_len, _ = hidden_states.size() + +# query_states = self.q_proj(hidden_states) +# key_states = self.k_proj(hidden_states) +# value_states = self.v_proj(hidden_states) + +# query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) +# key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) +# value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + +# kv_seq_len = key_states.shape[-2] +# if past_key_value is not None: +# if self.layer_idx is None: +# raise ValueError( +# f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " +# "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " +# "with a layer index." +# ) +# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) +# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) +# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + +# if past_key_value is not None: +# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models +# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + +# # repeat k/v heads if n_kv_heads < n_heads +# key_states = repeat_kv(key_states, self.num_key_value_groups) +# value_states = repeat_kv(value_states, self.num_key_value_groups) + +# attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + +# if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): +# raise ValueError( +# f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" +# f" {attn_weights.size()}" +# ) + +# if attention_mask is not None: # no matter the length, we just slice it +# causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] +# attn_weights = attn_weights + causal_mask + +# # upcast attention to fp32 +# attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) +# attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) +# attn_output = torch.matmul(attn_weights, value_states) + +# if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): +# raise ValueError( +# f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" +# f" {attn_output.size()}" +# ) + +# attn_output = attn_output.transpose(1, 2).contiguous() +# attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + +# attn_output = self.o_proj(attn_output) + +# if not output_attentions: +# attn_weights = None + +# return attn_output, attn_weights, past_key_value + + +# class EdgellmFlashAttention2(EdgellmAttention): +# """ +# Edgellm flash attention module, following Edgellm attention module. This module inherits from `EdgellmAttention` +# as the weights of the module stays untouched. The only required change would be on the forward pass +# where it needs to correctly call the public API of flash attention and deal with padding tokens +# in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom +# config.max_window_layers layers. +# """ + +# # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ +# def __init__(self, *args, **kwargs): +# super().__init__(*args, **kwargs) + +# # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. +# # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. +# # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). +# self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + +# def forward( +# self, +# hidden_states: torch.Tensor, +# attention_mask: Optional[torch.Tensor] = None, +# position_ids: Optional[torch.LongTensor] = None, +# past_key_value: Optional[Cache] = None, +# output_attentions: bool = False, +# use_cache: bool = False, +# cache_position: Optional[torch.LongTensor] = None, +# ): +# bsz, q_len, _ = hidden_states.size() + +# query_states = self.q_proj(hidden_states) +# key_states = self.k_proj(hidden_states) +# value_states = self.v_proj(hidden_states) + +# query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) +# key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) +# value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + +# kv_seq_len = key_states.shape[-2] +# if past_key_value is not None: +# if self.layer_idx is None: +# raise ValueError( +# f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " +# "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " +# "with a layer index." +# ) +# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + +# # Because the input can be padded, the absolute sequence length depends on the max position id. +# rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 +# cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) + +# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + +# use_sliding_windows = ( +# _flash_supports_window_size +# and getattr(self.config, "sliding_window", None) is not None +# and kv_seq_len > self.config.sliding_window +# and self.config.use_sliding_window +# ) + +# if not _flash_supports_window_size: +# logger.warning_once( +# "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" +# " make sure to upgrade flash-attn library." +# ) + +# if past_key_value is not None: +# # Activate slicing cache only if the config has a value `sliding_windows` attribute +# cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 +# if ( +# getattr(self.config, "sliding_window", None) is not None +# and kv_seq_len > self.config.sliding_window +# and cache_has_contents +# ): +# slicing_tokens = 1 - self.config.sliding_window + +# past_key = past_key_value[self.layer_idx][0] +# past_value = past_key_value[self.layer_idx][1] + +# past_key = past_key[:, :, slicing_tokens:, :].contiguous() +# past_value = past_value[:, :, slicing_tokens:, :].contiguous() + +# if past_key.shape[-2] != self.config.sliding_window - 1: +# raise ValueError( +# f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" +# f" {past_key.shape}" +# ) + +# if attention_mask is not None: +# attention_mask = attention_mask[:, slicing_tokens:] +# attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) + +# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models +# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + +# # repeat k/v heads if n_kv_heads < n_heads +# key_states = repeat_kv(key_states, self.num_key_value_groups) +# value_states = repeat_kv(value_states, self.num_key_value_groups) +# dropout_rate = 0.0 if not self.training else self.attention_dropout + +# # In PEFT, usually we cast the layer norms in float32 for training stability reasons +# # therefore the input hidden states gets silently casted in float32. Hence, we need +# # cast them back in float16 just to be sure everything works as expected. +# input_dtype = query_states.dtype +# if input_dtype == torch.float32: +# if torch.is_autocast_enabled(): +# target_dtype = torch.get_autocast_gpu_dtype() +# # Handle the case where the model is quantized +# elif hasattr(self.config, "_pre_quantization_dtype"): +# target_dtype = self.config._pre_quantization_dtype +# else: +# target_dtype = self.q_proj.weight.dtype + +# logger.warning_once( +# f"The input hidden states seems to be silently casted in float32, this might be related to" +# f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" +# f" {target_dtype}." +# ) + +# query_states = query_states.to(target_dtype) +# key_states = key_states.to(target_dtype) +# value_states = value_states.to(target_dtype) + +# # Reashape to the expected shape for Flash Attention +# query_states = query_states.transpose(1, 2) +# key_states = key_states.transpose(1, 2) +# value_states = value_states.transpose(1, 2) + +# attn_output = self._flash_attention_forward( +# query_states, +# key_states, +# value_states, +# attention_mask, +# q_len, +# dropout=dropout_rate, +# use_sliding_windows=use_sliding_windows, +# ) + +# attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() +# attn_output = self.o_proj(attn_output) + +# if not output_attentions: +# attn_weights = None + +# return attn_output, attn_weights, past_key_value + +# def _flash_attention_forward( +# self, +# query_states, +# key_states, +# value_states, +# attention_mask, +# query_length, +# dropout=0.0, +# softmax_scale=None, +# use_sliding_windows=False, +# ): +# """ +# Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token +# first unpad the input, then computes the attention scores and pad the final attention scores. + +# Args: +# query_states (`torch.Tensor`): +# Input query states to be passed to Flash Attention API +# key_states (`torch.Tensor`): +# Input key states to be passed to Flash Attention API +# value_states (`torch.Tensor`): +# Input value states to be passed to Flash Attention API +# attention_mask (`torch.Tensor`): +# The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the +# position of padding tokens and 1 for the position of non-padding tokens. +# dropout (`float`): +# Attention dropout +# softmax_scale (`float`, *optional*): +# The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) +# use_sliding_windows (`bool`, *optional*): +# Whether to activate sliding window attention. +# """ +# if not self._flash_attn_uses_top_left_mask: +# causal = self.is_causal +# else: +# # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. +# causal = self.is_causal and query_length != 1 + +# # Decide whether to use SWA or not by layer index. +# if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: +# use_sliding_windows = False + +# # Contains at least one padding token in the sequence +# if attention_mask is not None: +# batch_size = query_states.shape[0] +# query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( +# query_states, key_states, value_states, attention_mask, query_length +# ) + +# cu_seqlens_q, cu_seqlens_k = cu_seq_lens +# max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + +# if not use_sliding_windows: +# attn_output_unpad = flash_attn_varlen_func( +# query_states, +# key_states, +# value_states, +# cu_seqlens_q=cu_seqlens_q, +# cu_seqlens_k=cu_seqlens_k, +# max_seqlen_q=max_seqlen_in_batch_q, +# max_seqlen_k=max_seqlen_in_batch_k, +# dropout_p=dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# ) +# else: +# attn_output_unpad = flash_attn_varlen_func( +# query_states, +# key_states, +# value_states, +# cu_seqlens_q=cu_seqlens_q, +# cu_seqlens_k=cu_seqlens_k, +# max_seqlen_q=max_seqlen_in_batch_q, +# max_seqlen_k=max_seqlen_in_batch_k, +# dropout_p=dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# window_size=(self.config.sliding_window, self.config.sliding_window), +# ) + +# attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) +# else: +# if not use_sliding_windows: +# attn_output = flash_attn_func( +# query_states, +# key_states, +# value_states, +# dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# ) +# else: +# attn_output = flash_attn_func( +# query_states, +# key_states, +# value_states, +# dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# window_size=(self.config.sliding_window, self.config.sliding_window), +# ) + +# return attn_output + +# # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input +# def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): +# batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape + +# # On the first iteration we need to properly re-create the padding mask +# # by slicing it on the proper place +# if kv_seq_len != attention_mask.shape[-1]: +# attention_mask_num_tokens = attention_mask.shape[-1] +# attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] + +# indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + +# key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) +# value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + +# if query_length == kv_seq_len: +# query_layer = index_first_axis( +# query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k +# ) +# cu_seqlens_q = cu_seqlens_k +# max_seqlen_in_batch_q = max_seqlen_in_batch_k +# indices_q = indices_k +# elif query_length == 1: +# max_seqlen_in_batch_q = 1 +# cu_seqlens_q = torch.arange( +# batch_size + 1, dtype=torch.int32, device=query_layer.device +# ) # There is a memcpy here, that is very bad. +# indices_q = cu_seqlens_q[:-1] +# query_layer = query_layer.squeeze(1) +# else: +# # The -q_len: slice assumes left padding. +# attention_mask = attention_mask[:, -query_length:] +# query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + +# return ( +# query_layer, +# key_layer, +# value_layer, +# indices_q, +# (cu_seqlens_q, cu_seqlens_k), +# (max_seqlen_in_batch_q, max_seqlen_in_batch_k), +# ) + + +# Copied from https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite/blob/main/modeling_deepseek.py +# DeepseekV2Attention with DeepseekV2->Edgellm + +class EdgellmAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + self.attn_in = IdentityOperation() + self.attn_out = IdentityOperation() + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear( + self.hidden_size, self.num_heads * self.q_head_dim, bias=False + ) # 2048 16 192 + else: + self.q_a_proj = nn.Linear( + self.hidden_size, config.q_lora_rank, bias=config.attention_bias + ) + self.q_a_layernorm = EdgellmRMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear( + config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False + ) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) # 2048 512 64 + self.kv_a_layernorm = EdgellmRMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads + * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) #512 + # breakpoint() + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) # 16 128 2048 + self._init_rope() + + self.softmax_scale = self.q_head_dim ** (-0.5) # sqrt 1/192 + + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = EdgellmRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] + if key in self.config.rope_scaling + } + self.rotary_emb = DeepseekV2YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return ( + tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) + .transpose(1, 2) + .contiguous() + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) # 9,2048 -> 3072, 16 * 192 + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)#[1, 16, 9, 192]) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + )# [1, 16, 9, 128] [1, 16, 9, 64] + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) # 1 9 576 + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + )# 512 64 + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)# [1, 1, 9, 64]) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + # 1 16 9 256 + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) # 1 16 9 128, 1 16 9 128 + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)# ([1, 16, 9, 192]) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale + ) + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + attn_weights = attn_weights + attention_mask + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.attention_dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value +# class EdgellmAttention(nn.Module): +# """Multi-headed attention from 'Attention Is All You Need' paper""" + +# def __init__(self, config: EdgellmConfig, layer_idx: Optional[int] = None): +# super().__init__() +# self.config = config +# self.layer_idx = layer_idx +# if layer_idx is None: +# logger.warning_once( +# f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " +# "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " +# "when creating this class." +# ) + +# self.attention_dropout = config.attention_dropout +# self.hidden_size = config.hidden_size +# self.num_heads = config.num_attention_heads + +# self.max_position_embeddings = config.max_position_embeddings +# self.rope_theta = config.rope_theta +# self.q_lora_rank = config.q_lora_rank +# self.qk_rope_head_dim = config.qk_rope_head_dim +# self.kv_lora_rank = config.kv_lora_rank +# self.v_head_dim = config.v_head_dim +# self.qk_nope_head_dim = config.qk_nope_head_dim +# self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + +# self.is_causal = True + +# if self.q_lora_rank is None: +# self.q_proj = nn.Linear( +# self.hidden_size, self.num_heads * self.q_head_dim, bias=False +# ) +# else: +# self.q_a_proj = nn.Linear( +# self.hidden_size, config.q_lora_rank, bias=config.attention_bias +# ) +# self.q_a_layernorm = EdgellmRMSNorm(config.q_lora_rank) +# self.q_b_proj = nn.Linear( +# config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False +# ) + +# self.kv_a_proj_with_mqa = nn.Linear( +# self.hidden_size, +# config.kv_lora_rank + config.qk_rope_head_dim, +# bias=config.attention_bias, +# ) +# self.kv_a_layernorm = EdgellmRMSNorm(config.kv_lora_rank) +# self.kv_b_proj = nn.Linear( +# config.kv_lora_rank, +# self.num_heads +# * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), +# bias=False, +# ) + +# self.o_proj = nn.Linear( +# self.num_heads * self.v_head_dim, +# self.hidden_size, +# bias=config.attention_bias, +# ) +# self._init_rope() + +# self.softmax_scale = self.q_head_dim ** (-0.5) +# if self.config.rope_scaling is not None: +# mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) +# scaling_factor = self.config.rope_scaling["factor"] +# if mscale_all_dim: +# mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) +# self.softmax_scale = self.softmax_scale * mscale * mscale + +# def _init_rope(self): +# if self.config.rope_scaling is None: +# self.rotary_emb = EdgellmRotaryEmbedding( +# self.qk_rope_head_dim, +# max_position_embeddings=self.max_position_embeddings, +# base=self.rope_theta, +# ) +# else: +# scaling_type = self.config.rope_scaling["type"] +# scaling_factor = self.config.rope_scaling["factor"] +# if scaling_type == "linear": +# self.rotary_emb = EdgellmLinearScalingRotaryEmbedding( +# self.qk_rope_head_dim, +# max_position_embeddings=self.max_position_embeddings, +# scaling_factor=scaling_factor, +# base=self.rope_theta, +# ) +# elif scaling_type == "dynamic": +# self.rotary_emb = EdgellmDynamicNTKScalingRotaryEmbedding( +# self.qk_rope_head_dim, +# max_position_embeddings=self.max_position_embeddings, +# scaling_factor=scaling_factor, +# base=self.rope_theta, +# ) +# elif scaling_type == "yarn": +# kwargs = { +# key: self.config.rope_scaling[key] +# for key in [ +# "original_max_position_embeddings", +# "beta_fast", +# "beta_slow", +# "mscale", +# "mscale_all_dim", +# ] +# if key in self.config.rope_scaling +# } +# self.rotary_emb = EdgellmYarnRotaryEmbedding( +# self.qk_rope_head_dim, +# max_position_embeddings=self.max_position_embeddings, +# scaling_factor=scaling_factor, +# base=self.rope_theta, +# **kwargs, +# ) +# else: +# raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + +# def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): +# return ( +# tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) +# .transpose(1, 2) +# .contiguous() +# ) + +# def forward( +# self, +# hidden_states: torch.Tensor, +# attention_mask: Optional[torch.Tensor] = None, +# position_ids: Optional[torch.LongTensor] = None, +# past_key_value: Optional[Cache] = None, +# output_attentions: bool = False, +# use_cache: bool = False, +# **kwargs, +# ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: +# if "padding_mask" in kwargs: +# warnings.warn( +# "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" +# ) +# torch.save(hidden_states, "hf-hidden_states.pt") +# bsz, q_len, _ = hidden_states.size() + +# if self.q_lora_rank is None: +# q = self.q_proj(hidden_states) +# else: +# q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) +# q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) +# q_nope, q_pe = torch.split( +# q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 +# ) + +# compressed_kv = self.kv_a_proj_with_mqa(hidden_states) +# compressed_kv, k_pe = torch.split( +# compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 +# ) +# k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) +# kv = ( +# self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) +# .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) +# .transpose(1, 2) +# ) + +# k_nope, value_states = torch.split( +# kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 +# ) +# kv_seq_len = value_states.shape[-2] +# if past_key_value is not None: +# if self.layer_idx is None: +# raise ValueError( +# f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " +# "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " +# "with a layer index." +# ) +# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + +# # torch.save(value_states, "./hf_value_states_rope.pt") +# # print(kv_seq_len) +# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) +# # torch.save(q_pe, "./hf_q_pe_1.pt") +# # torch.save(cos, "./hf-cos.pt") +# # torch.save(cos, "./hf-sin.pt") +# q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) +# # torch.save(q_pe, "./hf_q_pe_2.pt") +# query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) +# query_states[:, :, :, : self.qk_nope_head_dim] = q_nope +# query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + +# key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) +# key_states[:, :, :, : self.qk_nope_head_dim] = k_nope +# key_states[:, :, :, self.qk_nope_head_dim :] = k_pe +# if past_key_value is not None: +# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models +# key_states, value_states = past_key_value.update( +# key_states, value_states, self.layer_idx, cache_kwargs +# ) +# # torch.save(query_states, "./hf-q.pt") +# # torch.save(key_states, "./hf-k.pt") +# # torch.save(value_states, "./hf-v.pt") +# # breakpoint() +# attn_weights = ( +# torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale +# ) + +# if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): +# raise ValueError( +# f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" +# f" {attn_weights.size()}" +# ) +# assert attention_mask is not None +# if attention_mask is not None: +# if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): +# raise ValueError( +# f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" +# ) +# attn_weights = attn_weights + attention_mask + +# # upcast attention to fp32 +# attn_weights = nn.functional.softmax( +# attn_weights, dim=-1, dtype=torch.float32 +# ).to(query_states.dtype) +# attn_weights = nn.functional.dropout( +# attn_weights, p=self.attention_dropout, training=self.training +# ) +# attn_output = torch.matmul(attn_weights, value_states) + +# if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): +# raise ValueError( +# f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" +# f" {attn_output.size()}" +# ) + +# attn_output = attn_output.transpose(1, 2).contiguous() + +# attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + +# attn_output = self.o_proj(attn_output) + +# if not output_attentions: +# attn_weights = None + +# return attn_output, attn_weights, past_key_value + + +# Copied from https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite/blob/main/modeling_deepseek.py +# DeepseekV2Attention with DeepseekV2->Edgellm +# class EdgellmFlashAttention2(EdgellmAttention): +# """ +# Edgellm flash attention module. This module inherits from `EdgellmAttention` as the weights of the module stays +# untouched. The only required change would be on the forward pass where it needs to correctly call the public API of +# flash attention and deal with padding tokens in case the input contains any of them. +# """ + +# def __init__(self, *args, **kwargs): +# super().__init__(*args, **kwargs) + +# # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. +# # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. +# # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). +# self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + +# def forward( +# self, +# hidden_states: torch.Tensor, +# attention_mask: Optional[torch.LongTensor] = None, +# position_ids: Optional[torch.LongTensor] = None, +# past_key_value: Optional[Cache] = None, +# output_attentions: bool = False, +# use_cache: bool = False, +# **kwargs, +# ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: +# # EdgellmFlashAttention2 attention does not support output_attentions +# if "padding_mask" in kwargs: +# warnings.warn( +# "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" +# ) + +# # overwrite attention_mask with padding_mask +# attention_mask = kwargs.pop("padding_mask") + +# output_attentions = False + +# bsz, q_len, _ = hidden_states.size() + +# if self.q_lora_rank is None: +# q = self.q_proj(hidden_states) +# else: +# q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) +# q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) +# q_nope, q_pe = torch.split( +# q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 +# ) + +# # Flash attention requires the input to have the shape +# # batch_size x seq_length x head_dim x hidden_dim +# # therefore we just need to keep the original shape +# compressed_kv = self.kv_a_proj_with_mqa(hidden_states) +# compressed_kv, k_pe = torch.split( +# compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 +# ) +# k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) +# kv = ( +# self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) +# .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) +# .transpose(1, 2) +# ) + +# k_nope, value_states = torch.split( +# kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 +# ) +# kv_seq_len = value_states.shape[-2] + +# kv_seq_len = value_states.shape[-2] +# if past_key_value is not None: +# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + +# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) +# q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + +# query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) +# query_states[:, :, :, : self.qk_nope_head_dim] = q_nope +# query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + +# key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) +# key_states[:, :, :, : self.qk_nope_head_dim] = k_nope +# key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + +# if self.q_head_dim != self.v_head_dim: +# value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) + +# if past_key_value is not None: +# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models +# key_states, value_states = past_key_value.update( +# key_states, value_states, self.layer_idx, cache_kwargs +# ) + +# # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache +# # to be able to avoid many of these transpose/reshape/view. +# query_states = query_states.transpose(1, 2) +# key_states = key_states.transpose(1, 2) +# value_states = value_states.transpose(1, 2) + +# dropout_rate = self.attention_dropout if self.training else 0.0 + +# # In PEFT, usually we cast the layer norms in float32 for training stability reasons +# # therefore the input hidden states gets silently casted in float32. Hence, we need +# # cast them back in the correct dtype just to be sure everything works as expected. +# # This might slowdown training & inference so it is recommended to not cast the LayerNorms +# # in fp32. (EdgellmRMSNorm handles it correctly) + +# input_dtype = query_states.dtype +# if input_dtype == torch.float32: +# # Handle the case where the model is quantized +# if hasattr(self.config, "_pre_quantization_dtype"): +# target_dtype = self.config._pre_quantization_dtype +# elif torch.is_autocast_enabled(): +# target_dtype = torch.get_autocast_gpu_dtype() +# else: +# target_dtype = ( +# self.q_proj.weight.dtype +# if self.q_lora_rank is None +# else self.q_a_proj.weight.dtype +# ) + +# logger.warning_once( +# f"The input hidden states seems to be silently casted in float32, this might be related to" +# f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" +# f" {target_dtype}." +# ) + +# query_states = query_states.to(target_dtype) +# key_states = key_states.to(target_dtype) +# value_states = value_states.to(target_dtype) + +# attn_output = self._flash_attention_forward( +# query_states, +# key_states, +# value_states, +# attention_mask, +# q_len, +# dropout=dropout_rate, +# softmax_scale=self.softmax_scale, +# ) +# if self.q_head_dim != self.v_head_dim: +# attn_output = attn_output[:, :, :, : self.v_head_dim] + +# attn_output = attn_output.reshape( +# bsz, q_len, self.num_heads * self.v_head_dim +# ).contiguous() +# attn_output = self.o_proj(attn_output) + +# if not output_attentions: +# attn_weights = None + +# return attn_output, attn_weights, past_key_value + +# def _flash_attention_forward( +# self, +# query_states, +# key_states, +# value_states, +# attention_mask, +# query_length, +# dropout=0.0, +# softmax_scale=None, +# ): +# """ +# Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token +# first unpad the input, then computes the attention scores and pad the final attention scores. +# Args: +# query_states (`torch.Tensor`): +# Input query states to be passed to Flash Attention API +# key_states (`torch.Tensor`): +# Input key states to be passed to Flash Attention API +# value_states (`torch.Tensor`): +# Input value states to be passed to Flash Attention API +# attention_mask (`torch.Tensor`): +# The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the +# position of padding tokens and 1 for the position of non-padding tokens. +# dropout (`int`, *optional*): +# Attention dropout +# softmax_scale (`float`, *optional*): +# The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) +# """ +# if not self._flash_attn_uses_top_left_mask: +# causal = self.is_causal +# else: +# # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in EdgellmFlashAttention2 __init__. +# causal = self.is_causal and query_length != 1 + +# # Contains at least one padding token in the sequence +# if attention_mask is not None: +# batch_size = query_states.shape[0] +# ( +# query_states, +# key_states, +# value_states, +# indices_q, +# cu_seq_lens, +# max_seq_lens, +# ) = self._upad_input( +# query_states, key_states, value_states, attention_mask, query_length +# ) + +# cu_seqlens_q, cu_seqlens_k = cu_seq_lens +# max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + +# attn_output_unpad = flash_attn_varlen_func( +# query_states, +# key_states, +# value_states, +# cu_seqlens_q=cu_seqlens_q, +# cu_seqlens_k=cu_seqlens_k, +# max_seqlen_q=max_seqlen_in_batch_q, +# max_seqlen_k=max_seqlen_in_batch_k, +# dropout_p=dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# ) + +# attn_output = pad_input( +# attn_output_unpad, indices_q, batch_size, query_length +# ) +# else: +# attn_output = flash_attn_func( +# query_states, +# key_states, +# value_states, +# dropout, +# softmax_scale=softmax_scale, +# causal=causal, +# ) + +# return attn_output + +# def _upad_input( +# self, query_layer, key_layer, value_layer, attention_mask, query_length +# ): +# indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) +# batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + +# key_layer = index_first_axis( +# key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), +# indices_k, +# ) +# value_layer = index_first_axis( +# value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), +# indices_k, +# ) +# if query_length == kv_seq_len: +# query_layer = index_first_axis( +# query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), +# indices_k, +# ) +# cu_seqlens_q = cu_seqlens_k +# max_seqlen_in_batch_q = max_seqlen_in_batch_k +# indices_q = indices_k +# elif query_length == 1: +# max_seqlen_in_batch_q = 1 +# cu_seqlens_q = torch.arange( +# batch_size + 1, dtype=torch.int32, device=query_layer.device +# ) # There is a memcpy here, that is very bad. +# indices_q = cu_seqlens_q[:-1] +# query_layer = query_layer.squeeze(1) +# else: +# # The -q_len: slice assumes left padding. +# attention_mask = attention_mask[:, -query_length:] +# query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( +# query_layer, attention_mask +# ) + +# return ( +# query_layer, +# key_layer, +# value_layer, +# indices_q, +# (cu_seqlens_q, cu_seqlens_k), +# (max_seqlen_in_batch_q, max_seqlen_in_batch_k), +# ) + +class EdgellmFlashAttention2(EdgellmAttention): + """ + DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # DeepseekV2FlashAttention2 attention does not support output_attentions + + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + + if self.q_head_dim != self.v_head_dim: + value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (DeepseekV2RMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + elif torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + else: + target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + # breakpoint() + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + softmax_scale=self.softmax_scale, + ) + if self.q_head_dim != self.v_head_dim: + attn_output = attn_output[:, :, :, : self.v_head_dim] + + attn_output = attn_output.reshape( + bsz, q_len, self.num_heads * self.v_head_dim + ).contiguous() + # torch.save(attn_output, "./hf-attn_output_b_821.pt") + # breakpoint() + attn_output = self.o_proj(attn_output) + # torch.save(attn_output, "./hf-attn_output_821.pt") + # breakpoint() + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + ( + query_states, + key_states, + value_states, + indices_q, + cu_seq_lens, + max_seq_lens, + ) = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input( + attn_output_unpad, indices_q, batch_size, query_length + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + return attn_output + + def _upad_input( + self, query_layer, key_layer, value_layer, attention_mask, query_length + ): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), + indices_k, + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( + query_layer, attention_mask + ) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) +Edgellm_ATTENTION_CLASSES = { + "eager": EdgellmAttention, + "flash_attention_2": EdgellmFlashAttention2, +} + + +class EdgellmDecoderLayer(nn.Module): + def __init__(self, config: EdgellmConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + if config.use_sliding_window and config._attn_implementation != "flash_attention_2": + logger.warning_once( + f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " + "unexpected results may be encountered." + ) + self.self_attn = Edgellm_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) + self.mlp = EdgellmMLP(config) + self.input_layernorm = EdgellmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = EdgellmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +Edgellm_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`EdgellmConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Edgellm Model outputting raw hidden-states without any specific head on top.", + Edgellm_START_DOCSTRING, +) +class EdgellmPreTrainedModel(PreTrainedModel): + config_class = EdgellmConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["EdgellmDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +Edgellm_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare Edgellm Model outputting raw hidden-states without any specific head on top.", + Edgellm_START_DOCSTRING, +) +class EdgellmModel(EdgellmPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`EdgellmDecoderLayer`] + + Args: + config: EdgellmConfig + """ + + def __init__(self, config: EdgellmConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [EdgellmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._attn_implementation = config._attn_implementation + self.norm = EdgellmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(Edgellm_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + if self.config._attn_implementation == "flash_attention_2": + # 2d mask is passed through the layers + attention_mask = ( + attention_mask + if (attention_mask is not None and 0 in attention_mask) + else None + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class EdgellmForCausalLM(EdgellmPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = EdgellmModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(Edgellm_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, EdgellmForCausalLM + + >>> model = EdgellmForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + cache_position=None, + use_cache=True, + **kwargs, + ): + past_length = 0 + # Omit tokens covered by past_key_values + if past_key_values is not None: + # Past key values are always initialized with a `Cache` object -> no need for if-else anymore + past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() + max_cache_length = ( + torch.tensor(past_key_values.get_max_length(), device=input_ids.device) + if past_key_values.get_max_length() is not None + else None + ) + cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_length == 0: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] + if cache_position is None: + cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) + elif use_cache: + cache_position = cache_position[-input_length:] + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": use_cache, + "attention_mask": attention_mask, + "cache_position": cache_position, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The Edgellm Model transformer with a sequence classification head on top (linear layer). + + [`EdgellmForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + Edgellm_START_DOCSTRING, +) +class EdgellmForSequenceClassification(EdgellmPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = EdgellmModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(Edgellm_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The Edgellm Model transformer with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + Edgellm_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Edgellm, LLAMA->Edgellm +class EdgellmForTokenClassification(EdgellmPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = EdgellmModel(config) + if getattr(config, "classifier_dropout", None) is not None: + classifier_dropout = config.classifier_dropout + elif getattr(config, "hidden_dropout", None) is not None: + classifier_dropout = config.hidden_dropout + else: + classifier_dropout = 0.1 + self.dropout = nn.Dropout(classifier_dropout) + self.score = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(Edgellm_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output) + logits = self.score(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# if __name__=="__main__": +# from IPython import embed +# from transformers import Qwen2Tokenizer +# import light_hf_proxy +# tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen2-1.5B") +# config = EdgellmConfig.from_pretrained("/data/daven/edge/edgellm/edgellm/config.json" ,attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) +# model = EdgellmForCausalLM(config).to(torch.bfloat16).to("cuda:7") +# input_ids = tokenizer( +# "Thanks to the generous support from SIGMOD EC, we will provide scholarship awards to selected students attending the WSDM 2024 conference. For awardees attending in-person, the grant will cover the cost of registration + some travel expenses. The awards will be competitive in the sense that not every student will receive a Travel Award. Each awardee will receive a bursary to partially cover the expense to attend the conference in-person. Awardees are expected to register for the main conference using a free-registration code provided with the award notification email and will have to make their own arrangements for travel and accommodation.Awardees are expected to register for the main conference and will have to make their own arrangements for travel and accommodation." +# ) +# sample = torch.tensor([input_ids["input_ids"]]).to("cuda:7") # (1,L) + +# # Step 4: Forward pass through the model +# with torch.no_grad(): +# outputs = model(sample) + +# # Optionally, inspect the outputs +# print(outputs) + +# embed() \ No newline at end of file