jarodrigues commited on
Commit
0adcda1
·
verified ·
1 Parent(s): d73d950

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -39,7 +39,7 @@ widget:
39
  It is an **encoder** of the BERT family, based on the neural architecture Transformer and
40
  developed over the DeBERTa model, with most competitive performance for this language.
41
  It has different versions that were trained for different variants of Portuguese (PT),
42
- namely the European variant from Portugal (**PT-PT**) and the American variant from Brazil (**PT-BR**),
43
  and it is distributed free of charge and under a most permissible license.
44
 
45
  | Albertina's Family of Models |
@@ -53,7 +53,7 @@ and it is distributed free of charge and under a most permissible license.
53
  | [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) |
54
  | [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptbr-encoder) |
55
 
56
- **Albertina 1.5B PTPT** is the version for European **Portuguese** from **Portugal**,
57
  and to the best of our knowledge, this is an encoder specifically for this language and variant
58
  that, at the time of its initial distribution, sets a new state of the art for it, and is made publicly available
59
  and distributed for reuse.
@@ -127,8 +127,8 @@ We opted for a learning rate of 1e-5 with linear decay and 10k warm-up steps.
127
  # Evaluation
128
 
129
 
130
- We resorted to [HyperGlue-PT](?), a **PTPT version of the GLUE and SUPERGLUE** benchmark.
131
- We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Translate](https://www.deepl.com/), which specifically provides translation from English to PT-PT as an option.
132
 
133
  | Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
134
  |-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
@@ -137,8 +137,8 @@ We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Trans
137
  | **Albertina 900M PTPT** | 0.8339 | 0.4225 | **0.9171**| 0.8801 | 0.7033 | 0.6018 | 0.6728 | 0.8224 |
138
  | **Albertina 100M PTPT** | 0.6919 | 0.4742 | 0.8047 | 0.8590 | n.a. | 0.4529 | 0.6481 | 0.7578 |
139
  ||||||||||
140
- | **DeBERTa 1.5B EN** | 0.8147 | 0.4554 | 0.8696 | 0.8557 | 0.5167 | 0.4901 | 0.6687 | 0.8347 |
141
- | **DeBERTa 100M EN** | 0.6029 | **0.5634** | 0.7802 | 0.8320 | n.a. | 0.4698 | 0.6368 | 0.6829 |
142
 
143
 
144
 
@@ -153,8 +153,8 @@ We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Trans
153
  | **BERTimbau (335M)** | 0.6446 | **0.5634** | 0.8873 | 0.8842 | 0.6933 | 0.5438 | 0.6787 | 0.7783 |
154
  | **Albertina 100M PTBR** | 0.6582 | **0.5634** | 0.8149 | 0.8489 | n.a. | 0.4771 | 0.6469 | 0.7537 |
155
  ||||||||||
156
- | **DeBERTa 1.5B EN** | 0.7112 | **0.5634** | 0.8545 | 0.0123 | 0.5700 | 0.4307 | 0.3639 | 0.6217 |
157
- | **DeBERTa 100M EN** | 0.5716 | 0.5587 | 0.8060 | 0.8266 | n.a. | 0.4739 | 0.6391 | 0.6838 |
158
 
159
 
160
  <br>
@@ -212,9 +212,11 @@ The model can be used by fine-tuning it for a specific task:
212
  When using or citing this model, kindly cite the following [publication](https://arxiv.org/abs/?):
213
 
214
  ``` latex
215
- @misc{albertina-pt,
216
- title={Fostering the Ecosystem of Open Neural Encoders for Portuguese with Albertina PT-* family},
217
- author={Rodrigo Santos and João Rodrigues and Luís Gomes and João Silva and António Branco and Henrique Lopes Cardoso
 
 
218
  and Tomás Freitas Osório and Bernardo Leite},
219
  year={2024},
220
  eprint={?},
 
39
  It is an **encoder** of the BERT family, based on the neural architecture Transformer and
40
  developed over the DeBERTa model, with most competitive performance for this language.
41
  It has different versions that were trained for different variants of Portuguese (PT),
42
+ namely the European variant from Portugal (**PTPT**) and the American variant from Brazil (**PTBR**),
43
  and it is distributed free of charge and under a most permissible license.
44
 
45
  | Albertina's Family of Models |
 
53
  | [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) |
54
  | [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptbr-encoder) |
55
 
56
+ **Albertina 1.5B PTPT** is the version for **European Portuguese** from **Portugal**,
57
  and to the best of our knowledge, this is an encoder specifically for this language and variant
58
  that, at the time of its initial distribution, sets a new state of the art for it, and is made publicly available
59
  and distributed for reuse.
 
127
  # Evaluation
128
 
129
 
130
+ We resorted to [ExtraGLUE](https://huggingface.co/datasets/PORTULAN/extraglue), a **PTPT version of the GLUE and SUPERGLUE** benchmark.
131
+ We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Translate](https://www.deepl.com/), which specifically provides translation from English to PTPT as an option.
132
 
133
  | Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
134
  |-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
 
137
  | **Albertina 900M PTPT** | 0.8339 | 0.4225 | **0.9171**| 0.8801 | 0.7033 | 0.6018 | 0.6728 | 0.8224 |
138
  | **Albertina 100M PTPT** | 0.6919 | 0.4742 | 0.8047 | 0.8590 | n.a. | 0.4529 | 0.6481 | 0.7578 |
139
  ||||||||||
140
+ | **DeBERTa 1.5B (English)** | 0.8147 | 0.4554 | 0.8696 | 0.8557 | 0.5167 | 0.4901 | 0.6687 | 0.8347 |
141
+ | **DeBERTa 100M (English)** | 0.6029 | **0.5634** | 0.7802 | 0.8320 | n.a. | 0.4698 | 0.6368 | 0.6829 |
142
 
143
 
144
 
 
153
  | **BERTimbau (335M)** | 0.6446 | **0.5634** | 0.8873 | 0.8842 | 0.6933 | 0.5438 | 0.6787 | 0.7783 |
154
  | **Albertina 100M PTBR** | 0.6582 | **0.5634** | 0.8149 | 0.8489 | n.a. | 0.4771 | 0.6469 | 0.7537 |
155
  ||||||||||
156
+ | **DeBERTa 1.5B (English)** | 0.7112 | **0.5634** | 0.8545 | 0.0123 | 0.5700 | 0.4307 | 0.3639 | 0.6217 |
157
+ | **DeBERTa 100M (English)** | 0.5716 | 0.5587 | 0.8060 | 0.8266 | n.a. | 0.4739 | 0.6391 | 0.6838 |
158
 
159
 
160
  <br>
 
212
  When using or citing this model, kindly cite the following [publication](https://arxiv.org/abs/?):
213
 
214
  ``` latex
215
+ @misc{albertina-pt-fostering,
216
+ title={Fostering the Ecosystem of Open Neural Encoders for Portuguese
217
+ with Albertina PT-* family},
218
+ author={Rodrigo Santos and João Rodrigues and Luís Gomes and João Silva
219
+ and António Branco and Henrique Lopes Cardoso
220
  and Tomás Freitas Osório and Bernardo Leite},
221
  year={2024},
222
  eprint={?},