luismsgomes commited on
Commit
057971a
·
1 Parent(s): 94729b5

fixed README

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -31,7 +31,7 @@ Then you can use the model like this:
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["This is an example sentence", "Each sentence is converted"]
33
 
34
- model = SentenceTransformer('serafim-335m-portuguese-pt-sentence-encoder')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
@@ -57,8 +57,8 @@ def mean_pooling(model_output, attention_mask):
57
  sentences = ['This is an example sentence', 'Each sentence is converted']
58
 
59
  # Load model from HuggingFace Hub
60
- tokenizer = AutoTokenizer.from_pretrained('serafim-335m-portuguese-pt-sentence-encoder')
61
- model = AutoModel.from_pretrained('serafim-335m-portuguese-pt-sentence-encoder')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -80,7 +80,7 @@ print(sentence_embeddings)
80
 
81
  <!--- Describe how your model was evaluated -->
82
 
83
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=serafim-335m-portuguese-pt-sentence-encoder)
84
 
85
 
86
  ## Training
 
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["This is an example sentence", "Each sentence is converted"]
33
 
34
+ model = SentenceTransformer('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
 
57
  sentences = ['This is an example sentence', 'Each sentence is converted']
58
 
59
  # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder')
61
+ model = AutoModel.from_pretrained('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
80
 
81
  <!--- Describe how your model was evaluated -->
82
 
83
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=PORTULAN/serafim-335m-portuguese-pt-sentence-encoder)
84
 
85
 
86
  ## Training