information
Browse files
README.md
CHANGED
@@ -5,4 +5,71 @@ datasets:
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
pipeline_tag: text-generation
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
|
10 |
+
## Summary
|
11 |
+
|
12 |
+
`Deer-3b`, an instruction-following large language model trained on the open source dataset
|
13 |
+
that is licensed for commercial use. Based on `Bloom-3b`, Deer is trained on ~15k instruction/response fine tuning records
|
14 |
+
[`databricks-dolly-15k`](https://github.com/databrickslabs/dolly/tree/master/data) generated
|
15 |
+
by Databricks.
|
16 |
+
|
17 |
+
Deer will also be available in larger models size.
|
18 |
+
|
19 |
+
## Model Overview
|
20 |
+
`deer-3b` is a 3 billion parameter causal language model created that is derived from
|
21 |
+
[Blooms’s] 3B model and fine-tuned
|
22 |
+
on a [~15K record instruction corpus](https://github.com/databrickslabs/dolly/tree/master/data) generated by Databricks.
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
To use the model with the `transformers` library on a machine with GPUs.
|
27 |
+
|
28 |
+
```python
|
29 |
+
import torch
|
30 |
+
from transformers import pipeline
|
31 |
+
generate_text = pipeline(model="PSanni/Deer-3b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
32 |
+
```
|
33 |
+
|
34 |
+
You can then use the pipeline to answer instructions:
|
35 |
+
|
36 |
+
```python
|
37 |
+
res = generate_text("Explain to me the difference between nuclear fission and fusion.")
|
38 |
+
print(res[0]["generated_text"])
|
39 |
+
```
|
40 |
+
|
41 |
+
### LangChain Usage
|
42 |
+
|
43 |
+
To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
|
44 |
+
and the default for the pipeline is to only return the new text.
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from transformers import pipeline
|
49 |
+
generate_text = pipeline(model="PSanni/Deer-3b", torch_dtype=torch.bfloat16,
|
50 |
+
trust_remote_code=True, device_map="auto", return_full_text=True)
|
51 |
+
```
|
52 |
+
|
53 |
+
You can create a prompt that either has only an instruction or has an instruction with context:
|
54 |
+
|
55 |
+
```python
|
56 |
+
from langchain import PromptTemplate, LLMChain
|
57 |
+
from langchain.llms import HuggingFacePipeline
|
58 |
+
# template for an instrution with no input
|
59 |
+
prompt = PromptTemplate(
|
60 |
+
input_variables=["instruction"],
|
61 |
+
template="{instruction}")
|
62 |
+
# template for an instruction with input
|
63 |
+
prompt_with_context = PromptTemplate(
|
64 |
+
input_variables=["instruction", "context"],
|
65 |
+
template="{instruction}\n\nInput:\n{context}")
|
66 |
+
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
67 |
+
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
68 |
+
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
69 |
+
```
|
70 |
+
|
71 |
+
Example predicting using a simple instruction:
|
72 |
+
|
73 |
+
```python
|
74 |
+
print(llm_chain.predict(instruction="Give me list of morning exercises.").lstrip())
|
75 |
+
```
|