PSanni commited on
Commit
d28930e
·
1 Parent(s): 659eaf6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -41
README.md CHANGED
@@ -11,11 +11,6 @@ pipeline_tag: text-generation
11
 
12
  Deer will also be available in larger models size.
13
 
14
- ## Model Overview
15
- `deer-3b` is a 3 billion parameter causal language model created that is derived from
16
- [Blooms’s] 3B model and fine-tuned
17
- on a ~15K instructions.
18
-
19
  ## Usage
20
 
21
  To use the model with the `transformers` library on a machine with GPUs.
@@ -33,42 +28,6 @@ res = generate_text("Explain to me the difference between nuclear fission and fu
33
  print(res[0]["generated_text"])
34
  ```
35
 
36
- ### LangChain Usage
37
-
38
- To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
39
- and the default for the pipeline is to only return the new text.
40
-
41
- ```python
42
- import torch
43
- from transformers import pipeline
44
- generate_text = pipeline(model="PSanni/Deer-3b", torch_dtype=torch.bfloat16,
45
- trust_remote_code=True, device_map="auto", return_full_text=True)
46
- ```
47
-
48
- You can create a prompt that either has only an instruction or has an instruction with context:
49
-
50
- ```python
51
- from langchain import PromptTemplate, LLMChain
52
- from langchain.llms import HuggingFacePipeline
53
- # template for an instrution with no input
54
- prompt = PromptTemplate(
55
- input_variables=["instruction"],
56
- template="{instruction}")
57
- # template for an instruction with input
58
- prompt_with_context = PromptTemplate(
59
- input_variables=["instruction", "context"],
60
- template="{instruction}\n\nInput:\n{context}")
61
- hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
62
- llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
63
- llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
64
- ```
65
-
66
- Example predicting using a simple instruction:
67
-
68
- ```python
69
- print(llm_chain.predict(instruction="Give me list of morning exercises.").lstrip())
70
- ```
71
-
72
  ### Note:
73
 
74
  Kindly note that the model isn't attuned to human preferences and could generate unsuitable, unethical, biased, and toxic responses.
 
11
 
12
  Deer will also be available in larger models size.
13
 
 
 
 
 
 
14
  ## Usage
15
 
16
  To use the model with the `transformers` library on a machine with GPUs.
 
28
  print(res[0]["generated_text"])
29
  ```
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  ### Note:
32
 
33
  Kindly note that the model isn't attuned to human preferences and could generate unsuitable, unethical, biased, and toxic responses.