End of training
Browse files- README.md +74 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: finiteautomata/beto-sentiment-analysis
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: beto-sentiment-analysis-finetuned-detests
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# beto-sentiment-analysis-finetuned-detests
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2413
|
22 |
+
- Accuracy: 0.8396
|
23 |
+
- F1-score: 0.7695
|
24 |
+
- Precision: 0.7724
|
25 |
+
- Recall: 0.7668
|
26 |
+
- Auc: 0.7668
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.3772 | 1.0 | 174 | 0.4358 | 0.8298 | 0.6814 | 0.8246 | 0.6513 | 0.6513 |
|
58 |
+
| 0.1092 | 2.0 | 348 | 0.4312 | 0.8625 | 0.7925 | 0.8139 | 0.7765 | 0.7765 |
|
59 |
+
| 0.0955 | 3.0 | 522 | 0.7126 | 0.8412 | 0.7724 | 0.7746 | 0.7704 | 0.7704 |
|
60 |
+
| 0.0625 | 4.0 | 696 | 0.9681 | 0.8412 | 0.7688 | 0.7757 | 0.7627 | 0.7627 |
|
61 |
+
| 0.0056 | 5.0 | 870 | 1.1017 | 0.8347 | 0.7567 | 0.7666 | 0.7484 | 0.7484 |
|
62 |
+
| 0.0018 | 6.0 | 1044 | 1.2244 | 0.8347 | 0.7630 | 0.7651 | 0.7610 | 0.7610 |
|
63 |
+
| 0.0001 | 7.0 | 1218 | 1.2190 | 0.8412 | 0.7637 | 0.7778 | 0.7526 | 0.7526 |
|
64 |
+
| 0.0001 | 8.0 | 1392 | 1.2356 | 0.8396 | 0.7645 | 0.7739 | 0.7566 | 0.7566 |
|
65 |
+
| 0.0001 | 9.0 | 1566 | 1.2332 | 0.8380 | 0.7547 | 0.7746 | 0.7403 | 0.7403 |
|
66 |
+
| 0.0001 | 10.0 | 1740 | 1.2413 | 0.8396 | 0.7695 | 0.7724 | 0.7668 | 0.7668 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.33.1
|
72 |
+
- Pytorch 2.0.1+cu118
|
73 |
+
- Datasets 2.14.5
|
74 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 439490353
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28f9dc7d2a05a49c9722d6aba44371628834121233e9ca6d66ff400e376f30a7
|
3 |
size 439490353
|