Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# PP-OCRv4_server_rec_doc
|
6 |
+
|
7 |
+
## Introduction
|
8 |
+
|
9 |
+
PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities. The key accuracy metrics are as follow:
|
10 |
+
|
11 |
+
<table>
|
12 |
+
<tr>
|
13 |
+
<th>Recognition Avg Accuracy(%)</th>
|
14 |
+
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
15 |
+
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
16 |
+
<th>Model Storage Size (M)</th>
|
17 |
+
</tr>
|
18 |
+
<tr>
|
19 |
+
<td>PP-OCRv4_server_rec_doc</td>
|
20 |
+
<td>86.58</td>
|
21 |
+
<td>6.65 / 2.38</td>
|
22 |
+
<td>32.92 / 32.92</td>
|
23 |
+
<td>91 M</td>
|
24 |
+
</tr>
|
25 |
+
</table>
|
26 |
+
|
27 |
+
|
28 |
+
**Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
|
29 |
+
|
30 |
+
## Quick Start
|
31 |
+
|
32 |
+
### Installation
|
33 |
+
|
34 |
+
1. PaddlePaddle
|
35 |
+
|
36 |
+
Please refer to the following commands to install PaddlePaddle using pip:
|
37 |
+
|
38 |
+
```bash
|
39 |
+
# for CUDA11.8
|
40 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
|
41 |
+
|
42 |
+
# for CUDA12.6
|
43 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
44 |
+
|
45 |
+
# for CPU
|
46 |
+
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
47 |
+
```
|
48 |
+
|
49 |
+
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
|
50 |
+
|
51 |
+
2. PaddleOCR
|
52 |
+
|
53 |
+
Install the latest version of the PaddleOCR inference package from PyPI:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
python -m pip install paddleocr
|
57 |
+
```
|
58 |
+
|
59 |
+
### Model Usage
|
60 |
+
|
61 |
+
You can quickly experience the functionality with a single command:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
paddleocr text_recognition \
|
65 |
+
--model_name PP-OCRv4_server_rec_doc \
|
66 |
+
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
|
67 |
+
```
|
68 |
+
|
69 |
+
You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
|
70 |
+
|
71 |
+
```python
|
72 |
+
from paddleocr import TextRecognition
|
73 |
+
model = TextRecognition(model_name="PP-OCRv4_server_rec_doc")
|
74 |
+
output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
|
75 |
+
for res in output:
|
76 |
+
res.print()
|
77 |
+
res.save_to_img(save_path="./output/")
|
78 |
+
res.save_to_json(save_path="./output/res.json")
|
79 |
+
```
|
80 |
+
|
81 |
+
After running, the obtained result is as follows:
|
82 |
+
|
83 |
+
```json
|
84 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9796906113624573}}
|
85 |
+
```
|
86 |
+
|
87 |
+
The visualized image is as follows:
|
88 |
+
|
89 |
+

|
90 |
+
|
91 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
|
92 |
+
|
93 |
+
### Pipeline Usage
|
94 |
+
|
95 |
+
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
|
96 |
+
|
97 |
+
#### PP-OCRv4
|
98 |
+
|
99 |
+
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
|
100 |
+
* Document Image Orientation Classification Module (Optional)
|
101 |
+
* Text Image Unwarping Module (Optional)
|
102 |
+
* Text Line Orientation Classification Module (Optional)
|
103 |
+
* Text Detection Module
|
104 |
+
* Text Recognition Module
|
105 |
+
|
106 |
+
Run a single command to quickly experience the OCR pipeline:
|
107 |
+
|
108 |
+
```bash
|
109 |
+
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png \
|
110 |
+
--text_recognition_model_name PP-OCRv4_server_rec_doc \
|
111 |
+
--use_doc_orientation_classify False \
|
112 |
+
--use_doc_unwarping False \
|
113 |
+
--use_textline_orientation True \
|
114 |
+
--save_path ./output \
|
115 |
+
--device gpu:0
|
116 |
+
```
|
117 |
+
|
118 |
+
Results are printed to the terminal:
|
119 |
+
|
120 |
+
```json
|
121 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/818ebrVG4OtH3sjLR-NRI.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 0, 10],
|
122 |
+
...,
|
123 |
+
[ 0, 72]],
|
124 |
+
|
125 |
+
...,
|
126 |
+
|
127 |
+
[[189, 915],
|
128 |
+
...,
|
129 |
+
[190, 960]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([1, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['国8866', 'PPSS', '登机牌', 'BOARDING', '座位号', 'SEAT NO.', '舱位', 'CLASS', '序号', '日期DATE', 'SERIAL NO.', '航班FLIGHT', 'W', '035', 'MU237903DEC', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名', 'NAME', 'ZHANGQIWEI', '票号TKTNO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前1O分钟关闭 GATESCLOSE1OMINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.80317128, ..., 0.96791613]), 'rec_polys': array([[[ 0, 10],
|
130 |
+
...,
|
131 |
+
[ 0, 72]],
|
132 |
+
|
133 |
+
...,
|
134 |
+
|
135 |
+
[[189, 915],
|
136 |
+
...,
|
137 |
+
[190, 960]]], dtype=int16), 'rec_boxes': array([[ 0, ..., 72],
|
138 |
+
...,
|
139 |
+
[189, ..., 960]], dtype=int16)}}
|
140 |
+
```
|
141 |
+
|
142 |
+
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
143 |
+
|
144 |
+

|
145 |
+
|
146 |
+
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
|
147 |
+
|
148 |
+
```python
|
149 |
+
from paddleocr import PaddleOCR
|
150 |
+
|
151 |
+
ocr = PaddleOCR(
|
152 |
+
text_recognition_model_name="PP-OCRv4_server_rec_doc",
|
153 |
+
use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
|
154 |
+
use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
|
155 |
+
use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
|
156 |
+
device="gpu:0", # Use device to specify GPU for model inference
|
157 |
+
)
|
158 |
+
result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png")
|
159 |
+
for res in result:
|
160 |
+
res.print()
|
161 |
+
res.save_to_img("output")
|
162 |
+
res.save_to_json("output")
|
163 |
+
```
|
164 |
+
|
165 |
+
The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `PP-OCRv4_server_rec_doc` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
|
166 |
+
|
167 |
+
## Links
|
168 |
+
|
169 |
+
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
|
170 |
+
|
171 |
+
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|