Tingquan commited on
Commit
02d56c3
·
verified ·
1 Parent(s): 7fd82a2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # PP-OCRv4_server_rec_doc
6
+
7
+ ## Introduction
8
+
9
+ PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Recognition Avg Accuracy(%)</th>
14
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
15
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>Model Storage Size (M)</th>
17
+ </tr>
18
+ <tr>
19
+ <td>PP-OCRv4_server_rec_doc</td>
20
+ <td>86.58</td>
21
+ <td>6.65 / 2.38</td>
22
+ <td>32.92 / 32.92</td>
23
+ <td>91 M</td>
24
+ </tr>
25
+ </table>
26
+
27
+
28
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
29
+
30
+ ## Quick Start
31
+
32
+ ### Installation
33
+
34
+ 1. PaddlePaddle
35
+
36
+ Please refer to the following commands to install PaddlePaddle using pip:
37
+
38
+ ```bash
39
+ # for CUDA11.8
40
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
41
+
42
+ # for CUDA12.6
43
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
44
+
45
+ # for CPU
46
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
47
+ ```
48
+
49
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
50
+
51
+ 2. PaddleOCR
52
+
53
+ Install the latest version of the PaddleOCR inference package from PyPI:
54
+
55
+ ```bash
56
+ python -m pip install paddleocr
57
+ ```
58
+
59
+ ### Model Usage
60
+
61
+ You can quickly experience the functionality with a single command:
62
+
63
+ ```bash
64
+ paddleocr text_recognition \
65
+ --model_name PP-OCRv4_server_rec_doc \
66
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
67
+ ```
68
+
69
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
70
+
71
+ ```python
72
+ from paddleocr import TextRecognition
73
+ model = TextRecognition(model_name="PP-OCRv4_server_rec_doc")
74
+ output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
75
+ for res in output:
76
+ res.print()
77
+ res.save_to_img(save_path="./output/")
78
+ res.save_to_json(save_path="./output/res.json")
79
+ ```
80
+
81
+ After running, the obtained result is as follows:
82
+
83
+ ```json
84
+ {'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9796906113624573}}
85
+ ```
86
+
87
+ The visualized image is as follows:
88
+
89
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/kdVwBNn3ZVYr_gvdP_Ha1.png)
90
+
91
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
92
+
93
+ ### Pipeline Usage
94
+
95
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
96
+
97
+ #### PP-OCRv4
98
+
99
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
100
+ * Document Image Orientation Classification Module (Optional)
101
+ * Text Image Unwarping Module (Optional)
102
+ * Text Line Orientation Classification Module (Optional)
103
+ * Text Detection Module
104
+ * Text Recognition Module
105
+
106
+ Run a single command to quickly experience the OCR pipeline:
107
+
108
+ ```bash
109
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png \
110
+ --text_recognition_model_name PP-OCRv4_server_rec_doc \
111
+ --use_doc_orientation_classify False \
112
+ --use_doc_unwarping False \
113
+ --use_textline_orientation True \
114
+ --save_path ./output \
115
+ --device gpu:0
116
+ ```
117
+
118
+ Results are printed to the terminal:
119
+
120
+ ```json
121
+ {'res': {'input_path': '/root/.paddlex/predict_input/818ebrVG4OtH3sjLR-NRI.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 0, 10],
122
+ ...,
123
+ [ 0, 72]],
124
+
125
+ ...,
126
+
127
+ [[189, 915],
128
+ ...,
129
+ [190, 960]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([1, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['国8866', 'PPSS', '登机牌', 'BOARDING', '座位号', 'SEAT NO.', '舱位', 'CLASS', '序号', '日期DATE', 'SERIAL NO.', '航班FLIGHT', 'W', '035', 'MU237903DEC', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名', 'NAME', 'ZHANGQIWEI', '票号TKTNO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前1O分钟关闭 GATESCLOSE1OMINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.80317128, ..., 0.96791613]), 'rec_polys': array([[[ 0, 10],
130
+ ...,
131
+ [ 0, 72]],
132
+
133
+ ...,
134
+
135
+ [[189, 915],
136
+ ...,
137
+ [190, 960]]], dtype=int16), 'rec_boxes': array([[ 0, ..., 72],
138
+ ...,
139
+ [189, ..., 960]], dtype=int16)}}
140
+ ```
141
+
142
+ If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
143
+
144
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/0Zzd7YmoouQl2it5mmeAi.png)
145
+
146
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
147
+
148
+ ```python
149
+ from paddleocr import PaddleOCR
150
+
151
+ ocr = PaddleOCR(
152
+ text_recognition_model_name="PP-OCRv4_server_rec_doc",
153
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
154
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
155
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
156
+ device="gpu:0", # Use device to specify GPU for model inference
157
+ )
158
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png")
159
+ for res in result:
160
+ res.print()
161
+ res.save_to_img("output")
162
+ res.save_to_json("output")
163
+ ```
164
+
165
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `PP-OCRv4_server_rec_doc` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
166
+
167
+ ## Links
168
+
169
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
170
+
171
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)