Tingquan commited on
Commit
fb23019
·
verified ·
1 Parent(s): a4def94

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +141 -0
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # PicoDet_layout_1x_table
6
+
7
+ ## Introduction
8
+
9
+ A high-efficiency layout area localization model trained on a self-built dataset using PicoDet-1x, capable of detecting table regions. The key metrics are as follow:
10
+
11
+ | Model| mAP(0.5) (%) |
12
+ | --- | --- |
13
+ |PicoDet_layout_1x_table | 97.5 |
14
+
15
+ ## Quick Start
16
+
17
+ ### Installation
18
+
19
+ 1. PaddlePaddle
20
+
21
+ Please refer to the following commands to install PaddlePaddle using pip:
22
+
23
+ ```bash
24
+ # for CUDA11.8
25
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
26
+
27
+ # for CUDA12.6
28
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
29
+
30
+ # for CPU
31
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
32
+ ```
33
+
34
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
35
+
36
+ 2. PaddleOCR
37
+
38
+ Install the latest version of the PaddleOCR inference package from PyPI:
39
+
40
+ ```bash
41
+ python -m pip install paddleocr
42
+ ```
43
+
44
+
45
+ ### Model Usage
46
+
47
+ You can quickly experience the functionality with a single command:
48
+
49
+ ```bash
50
+ paddleocr layout_detection \
51
+ --model_name PicoDet_layout_1x_table \
52
+ -i https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/N5C68HPVAI-xQAWTxpbA6.jpeg
53
+ ```
54
+
55
+ You can also integrate the model inference of the layout detection module into your project. Before running the following code, please download the sample image to your local machine.
56
+
57
+ ```python
58
+ from paddleocr import LayoutDetection
59
+
60
+ model = LayoutDetection(model_name="PicoDet_layout_1x_table")
61
+ output = model.predict("N5C68HPVAI-xQAWTxpbA6.jpeg", batch_size=1, layout_nms=True)
62
+ for res in output:
63
+ res.print()
64
+ res.save_to_img(save_path="./output/")
65
+ res.save_to_json(save_path="./output/res.json")
66
+ ```
67
+
68
+ After running, the obtained result is as follows:
69
+
70
+ ```json
71
+ {'res': {'input_path': '/root/.paddlex/predict_input/N5C68HPVAI-xQAWTxpbA6.jpeg', 'page_index': None, 'boxes': [{'cls_id': 0, 'label': 'Table', 'score': 0.9617661237716675, 'coordinate': [435.82446, 106.01748, 665.04346, 316.21014]}, {'cls_id': 0, 'label': 'Table', 'score': 0.9583022594451904, 'coordinate': [72.52834, 106.46287, 322.751, 301.454]}]}}
72
+ ```
73
+
74
+ The visualized image is as follows:
75
+
76
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/Ok0E4g-kTS6ttCh771wKd.jpeg)
77
+
78
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/layout_detection.html#iii-quick-integration).
79
+
80
+ ### Pipeline Usage
81
+
82
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
83
+
84
+ #### PP-TableMagic (table_recognition_v2)
85
+
86
+ The General Table Recognition v2 pipeline (PP-TableMagic) is designed to tackle table recognition tasks, identifying tables in images and outputting them in HTML format. PP-TableMagic includes the following 8 modules:
87
+
88
+ * Table Structure Recognition Module
89
+ * Table Classification Module
90
+ * Table Cell Detection Module
91
+ * Text Detection Module
92
+ * Text Recognition Module
93
+ * Layout Region Detection Module (optional)
94
+ * Document Image Orientation Classification Module (optional)
95
+ * Text Image Unwarping Module (optional)
96
+
97
+ You can quickly experience the PP-TableMagic pipeline with a single command.
98
+
99
+ ```bash
100
+ paddleocr table_recognition_v2 -i https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/tuY1zoUdZsL6-9yGG0MpU.jpeg \
101
+ --layout_detection_model_name PicoDet_layout_1x_table \
102
+ --use_doc_orientation_classify False \
103
+ --use_doc_unwarping False \
104
+ --save_path ./output \
105
+ --device gpu:0
106
+
107
+ ```
108
+
109
+
110
+ If save_path is specified, the visualization results will be saved under `save_path`.
111
+
112
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
113
+
114
+
115
+ ```python
116
+ from paddleocr import TableRecognitionPipelineV2
117
+
118
+ pipeline = TableRecognitionPipelineV2(
119
+ layout_detection_model_name=PicoDet_layout_1x_table,
120
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
121
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
122
+ device="gpu:0", # Use device to specify GPU for model inference
123
+ )
124
+
125
+ output = pipeline.predict("tuY1zoUdZsL6-9yGG0MpU.jpeg")
126
+ for res in output:
127
+ res.print() ## Print the predicted structured output
128
+ res.save_to_img("./output/")
129
+ res.save_to_xlsx("./output/")
130
+ res.save_to_html("./output/")
131
+ res.save_to_json("./output/")
132
+ ```
133
+
134
+ The default model used in pipeline is `PP-DocLayout-L`, so it is needed that specifing to `PicoDet_layout_1x_table` by argument `layout_detection_model_name`. And you can also use the local model file by argument `layout_detection_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/main/en/version3.x/pipeline_usage/table_recognition_v2.html#2-quick-start).
135
+
136
+ ## Links
137
+
138
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
139
+
140
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
141
+