File size: 2,888 Bytes
9df58a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# -*- coding: utf-8 -*-
# Copied from: https://github.com/sustcsonglin/flash-linear-attention/blob/main/fla/models/hgrn2/configuration_hgrn2.py
from typing import Dict, Optional
from transformers.configuration_utils import PretrainedConfig
class HGRN2Config(PretrainedConfig):
model_type = 'hgrn2'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
attn_mode: str = "chunk",
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
attn: Optional[Dict] = None,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
vocab_size: int = 32000,
**kwargs
):
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attn_mode = attn_mode
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.use_lower_bound = use_lower_bound
self.max_position_embeddings = max_position_embeddings
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.attn = attn
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.vocab_size = vocab_size
if attn is not None:
if not isinstance(attn, Dict):
raise ValueError("attn must be a dictionary")
if 'layers' not in attn:
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
if 'num_heads' not in attn:
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
attn['window_size'] = attn.get('window_size', None)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
) |