ngme-babylm-100M / tokenization_ngme.py
PatrickHaller's picture
Upload NGMEForCausalLM
d59f795
raw
history blame
52.1 kB
import json
import unittest
import os
from collections import Counter
from typing import Dict, List, Optional, Sized, Tuple, Union, Any
import torch
import numpy as np
from tokenizers import AddedToken
from transformers import PreTrainedTokenizer
from transformers.tokenization_utils_base import (
BatchEncoding,
EncodedInput,
TruncationStrategy,
)
from transformers.utils import logging
from transformers.utils.generic import PaddingStrategy, TensorType, to_py_obj
from .ngme import ngrams as ngram_tokenizer
logger = logging.get_logger(__name__)
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
with open(vocab_file, "r", encoding="utf-8") as f:
vocab = json.load(f)
return vocab
def all_same(items):
return all(x == items[0] for x in items)
class NGMETokenizer(PreTrainedTokenizer):
model_input_names = ["input_ids", "attention_mask"]
vocab_file = "vocab.json"
vocab_files_names = {"vocab_file": vocab_file}
def __init__(
self,
vocab_file,
eos_token="\n",
pad_token="\n",
unk_token="<unk>",
eod_token="<eod>",
**kwargs,
):
super().__init__(
eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
)
eos_token = (
AddedToken(
eos_token,
lstrip=False,
rstrip=False,
)
if isinstance(eos_token, str)
else eos_token
)
pad_token = (
AddedToken(
pad_token,
lstrip=False,
rstrip=False,
)
if isinstance(pad_token, str)
else pad_token
)
unk_token = (
AddedToken(
unk_token,
lstrip=False,
rstrip=False,
)
if isinstance(unk_token, str)
else unk_token
)
self._ngram2word2idx = {}
self._ngram2idx2word = {}
self._current_max_idx = 0
self._frequencies: Counter = Counter()
self._load_from_file(vocab_file)
for n in range(2, self.ngram + 1):
self.model_input_names.append(f"ngram_{n}_sequence")
# TODO: COuld also be whitespace if n+1gram dont contain it
self._special_token = "Ġ"
assert self._special_token not in self._ngram2word2idx[1]
def __call__(self, *args, **kwargs) -> BatchEncoding:
if "return_ngram_sequences" in kwargs:
return_ngram_sequences = kwargs["return_ngram_sequences"]
del kwargs["return_ngram_sequences"]
else:
return_ngram_sequences = False
# We could check the args and kwargs beforehand and apply extra ngram sequences based on it, but
# we let HF handle all logic and reverse take the char sequence from the ids
batch_encoding = super().__call__(*args, **kwargs)
if return_ngram_sequences:
ngram_sequences = self.create_ngram_sequences(args[0])
# NOTE: This is pretty hard coded, lets just throw an error if the user wants to use it differently
if "padding" in kwargs:
if kwargs["padding"] == "max_length":
padded_sequences = {}
for n_key, sequence in ngram_sequences.items():
padded_sequences[n_key] = self.pad_sequence_right(
sequence,
len(batch_encoding["input_ids"][0]),
self.pad_token_id,
)
ngram_sequences = padded_sequences
elif kwargs["padding"] == "longest":
padded_sequences = {}
for n_key, sequence in ngram_sequences.items():
padded_sequences[n_key] = self.pad_sequence_right(
sequence,
max([len(seq) for seq in sequence]),
self.pad_token_id,
)
ngram_sequences = padded_sequences
else:
raise ValueError(
f"Padding {kwargs['padding']} not supported for ngram sequences"
)
if "truncation" in kwargs and kwargs["truncation"]:
truncated_sequences = {}
for n_key, sequence in ngram_sequences.items():
truncated_sequences[n_key] = self.truncate_sequence_right(
sequence, len(batch_encoding["input_ids"][0])
)
ngram_sequences = truncated_sequences
batch_encoding.update(ngram_sequences)
if "return_tensors" in kwargs:
batch_encoding.convert_to_tensors(kwargs["return_tensors"])
return batch_encoding
def pad_sequence_right(
self, batched_sequence: List[List[int]], padding_length: int, padding_value: int
) -> List[List[int]]:
padded_sequence = []
for sequence in batched_sequence:
padded_sequence.append(
sequence + [padding_value] * (padding_length - len(sequence))
)
return padded_sequence
def truncate_sequence_right(
self, batched_sequence: List[List[int]], max_length: int
) -> List[List[int]]:
truncated_sequence = []
for sequence in batched_sequence:
truncated_sequence.append(sequence[:max_length])
return truncated_sequence
def create_ngram_sequences(self, char_sequences: List[str]) -> Dict[str, Any]:
ngram_sequences_output = {}
if isinstance(char_sequences, str):
char_sequences = [char_sequences]
for n in range(2, self.ngram + 1):
ngram_sequences = []
for char_sequence in char_sequences:
ngrams = ["".join(ngram) for ngram in ngram_tokenizer(char_sequence, n)]
# Fill in the front with existign unigrams, for same length and
# because the timestep t should not look ahead
ngrams = list(char_sequence[: n - 1]) + ngrams
encoded_ngrams = self.encode(ngrams) if len(ngrams) > 0 else []
ngram_sequences.append(encoded_ngrams)
ngram_sequences_output[f"label_gram_{n}_sequence"] = ngram_sequences
return ngram_sequences_output
def _seq_size(self, encoded) -> Union[int, List[int]]:
if isinstance(encoded, torch.Tensor):
encoded = encoded.tolist()
if isinstance(encoded[0], list):
return [len(enc) for enc in encoded]
return len(encoded)
def _load_from_file(self, filename: str):
"""Loads a dictionary from a file."""
vocab_file = load_vocab(filename)
self.ngram = vocab_file["ngram"]
if "\n" not in vocab_file["vocab"]:
self._add_ngram("\n", 1)
for token in vocab_file["vocab"]:
self._add_ngram(token["token"], token["ngram"])
self._frequencies.update({token["token"]: token["frequency"]})
def _add_ngram(self, word, ngram: int) -> int:
"""Add a new n-gram token to the dictionary."""
self._frequencies.update({word: 1})
if ngram not in self._ngram2idx2word:
self._ngram2idx2word[ngram] = {self._current_max_idx: word}
self._ngram2word2idx[ngram] = {word: self._current_max_idx}
self._current_max_idx += 1
else:
if word not in self._ngram2word2idx[ngram]:
self._ngram2idx2word[ngram][self._current_max_idx] = word
self._ngram2word2idx[ngram][word] = self._current_max_idx
self._current_max_idx += 1
return self._ngram2word2idx[ngram][word]
def _is_contiguous(self):
vocab_size = len(self)
return list(range(vocab_size)) == [idx for idx, token in self._get_all_tokens()]
def _get_all_tokens(self):
"""Returns all tokens in the dictionary."""
for ngram in range(1, self.ngram + 1):
for idx, token in self._ngram2idx2word[ngram].items():
yield idx, token
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str]:
filename = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else ""),
self.vocab_file,
)
index = 0
vocab = {"ngram": self.ngram, "vocab": []}
for ngram in range(1, self.ngram + 1):
for idx, token in self._ngram2idx2word[ngram].items():
if index != idx:
index = idx
try:
frequency = self._frequencies[token]
except KeyError:
frequency = -1
index += 1
vocab["vocab"].append(
{
"token": token,
"index": idx,
"frequency": frequency,
"ngram": ngram,
}
)
with open(filename, "w", encoding="utf-8") as writer:
json.dump(vocab, writer, indent=4, ensure_ascii=False)
return (filename,)
@property
def vocab_size(self) -> int:
return self._current_max_idx
def _tokenize(self, text: str) -> List[str]:
return list(text)
def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
if ngram:
if token in self._ngram2word2idx[ngram]:
return self._ngram2word2idx[ngram][token]
else:
return self._ngram2word2idx[1]["<unk>"]
for ngram in range(1, self.ngram + 1):
if token in self._ngram2word2idx[ngram]:
return self._ngram2word2idx[ngram][token]
return self._ngram2word2idx[1]["<unk>"]
def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
return [self.get_idx(token) for token in ngram_tokens]
def convert_tokens_to_ids(self, tokens: List[str]):
if not tokens:
return []
if isinstance(tokens, str):
return self.get_idx(tokens)
return self._convert_ngram_tokens_to_ids(tokens)
def _convert_id_to_token(self, index: int) -> str:
return self.get_item_for_index(index)
def get_item_for_index(self, idx) -> str:
"""Return the token for a given index."""
for idxs in self._ngram2idx2word.values():
if idx in idxs:
return idxs[idx]
return self.unk_token
def convert_tokens_to_string(self, tokens):
return "".join(tokens)
def create_weight_tensor(self) -> torch.Tensor:
unked_freqs = self._frequencies.most_common()
t = torch.ones(len(self))
for token, freq in unked_freqs:
t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq
# Ensure the only whitespace character is weighted
t[self._ngram2word2idx[1][" "]] = 1.0
max_t = max(t)
normed_weights = torch.tensor([(1 - (x / (max_t + 1))).item() for x in t])
marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram + 1)]
marker_tokens.extend(
[self.get_idx("<start>", n) for n in range(1, self.ngram + 1)]
)
# Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
for marker in marker_tokens:
normed_weights[marker] = 0
return normed_weights
def _token_to_n_order(self, token: str) -> int:
"""Get N-gram order for a token"""
for n_gram, word2idx in self._ngram2word2idx.items():
if token in word2idx:
return n_gram
return 0
class GPTNGMETokenizer(PreTrainedTokenizer):
model_input_names = ["input_ids", "attention_mask"]
vocab_file = "vocab.json"
vocab_files_names = {"vocab_file": vocab_file}
def __init__(
self, vocab_file, eos_token="\n", pad_token="\n", unk_token="<unk>", **kwargs
):
eos_token = (
AddedToken(
eos_token,
lstrip=False,
rstrip=False,
)
if isinstance(eos_token, str)
else eos_token
)
pad_token = (
AddedToken(
pad_token,
lstrip=False,
rstrip=False,
)
if isinstance(pad_token, str)
else pad_token
)
unk_token = (
AddedToken(
unk_token,
lstrip=False,
rstrip=False,
)
if isinstance(unk_token, str)
else unk_token
)
super().__init__(
eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
)
self._ngram2word2idx = {}
self._ngram2idx2word = {}
self._current_max_idx = 0
self._frequencies: Counter = Counter()
self._load_from_file(vocab_file)
def _load_from_file(self, filename: str):
"""Loads a dictionary from a file."""
vocab_file = load_vocab(filename)
self.ngram = vocab_file["ngram"]
if "\n" not in vocab_file["vocab"]:
self._add_ngram("\n", 1)
for token in vocab_file["vocab"]:
self._add_ngram(token["token"], token["ngram"])
self._frequencies.update({token["token"]: token["frequency"]})
def _add_ngram(self, word, ngram: int) -> int:
"""Add a new n-gram token to the dictionary."""
self._frequencies.update({word: 1})
if ngram not in self._ngram2idx2word:
self._ngram2idx2word[ngram] = {self._current_max_idx: word}
self._ngram2word2idx[ngram] = {word: self._current_max_idx}
self._current_max_idx += 1
else:
if word not in self._ngram2word2idx[ngram]:
self._ngram2idx2word[ngram][self._current_max_idx] = word
self._ngram2word2idx[ngram][word] = self._current_max_idx
self._current_max_idx += 1
return self._ngram2word2idx[ngram][word]
def _is_contiguous(self):
vocab_size = len(self)
return list(range(vocab_size)) == [idx for idx, token in self._get_all_tokens()]
def _get_all_tokens(self):
"""Returns all tokens in the dictionary."""
for ngram in range(1, self.ngram + 1):
for idx, token in self._ngram2idx2word[ngram].items():
yield idx, token
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str]:
filename = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else ""),
self.vocab_file,
)
index = 0
vocab = {"ngram": self.ngram, "vocab": []}
for ngram in range(1, self.ngram + 1):
for idx, token in self._ngram2idx2word[ngram].items():
if index != idx:
index = idx
try:
frequency = self._frequencies[token]
except KeyError:
frequency = -1
index += 1
vocab["vocab"].append(
{
"token": token,
"index": idx,
"frequency": frequency,
"ngram": ngram,
}
)
with open(filename, "w", encoding="utf-8") as writer:
json.dump(vocab, writer, indent=4, ensure_ascii=False)
return (filename,)
@property
def vocab_size(self) -> int:
return self._current_max_idx
def retokenize(self, input_ids, *args, **kwargs):
decoded = self.convert_ids_to_tokens(input_ids)
sequence = "".join(decoded)
new_decoded = self(sequence, *args, **kwargs).input_ids
return new_decoded
def _tokenize(self, text):
ngram_sequences = []
for n in range(1, self.ngram + 1):
words = ["<start>" for _ in range(1, n)]
words.extend(list(text))
tokens = []
for i, word in enumerate(ngram_tokenizer(words, n)):
if "<start>" in word:
word = [w for w in list(word) if w != "<start>"]
tokens.append("".join(word))
ngram_sequences.append(tokens)
return ngram_sequences
def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
if ngram:
if token in self._ngram2word2idx[ngram]:
return self._ngram2word2idx[ngram][token]
else:
return self._ngram2word2idx[1]["<unk>"]
for ngram in range(1, self.ngram + 1):
if token in self._ngram2word2idx[ngram]:
return self._ngram2word2idx[ngram][token]
return self._ngram2word2idx[1]["<unk>"]
def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
return [self.get_idx(token) for token in ngram_tokens]
def convert_tokens_to_ids(self, tokens: List[List[str]]):
if not tokens:
return []
if isinstance(tokens, str):
return self.get_idx(tokens)
return [
self._convert_ngram_tokens_to_ids(ngram_tokens) for ngram_tokens in tokens
]
def _convert_id_to_token(self, index: int) -> str:
return self.get_item_for_index(index)
def get_item_for_index(self, idx) -> str:
"""Return the token for a given index."""
for idxs in self._ngram2idx2word.values():
if idx in idxs:
return idxs[idx]
return self.unk_token
def _decode(
self, token_ids: List[List[int]], skip_special_tokens: bool = False, **kwargs
) -> str:
return "".join(self.convert_ids_to_tokens(token_ids[0]))
def debug_decode(self, token_ids: List[List[int]]):
for n in range(1, self.ngram + 1):
print(f"{n}-gram: {self.convert_ids_to_tokens(token_ids[n-1])}")
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# encoded_inputs == one sample -> List[List[int]]
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
# PHA: Check if we have a list of list of list, then we unpack
if (
len(required_input) != 0
and isinstance(required_input[0], list)
and isinstance(required_input[0][0], list)
):
required_input = required_input[0]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if (
max_length is not None
and pad_to_multiple_of is not None
and (max_length % pad_to_multiple_of != 0)
):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = (
padding_strategy != PaddingStrategy.DO_NOT_PAD
and len(required_input[0]) != max_length
)
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
if len(required_input) == 0:
encoded_inputs["attention_mask"] = []
else:
encoded_inputs["attention_mask"] = [1] * len(required_input[0])
if needs_to_be_padded:
difference = max_length - len(required_input[0])
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = (
encoded_inputs["attention_mask"] + [0] * difference
)
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"]
+ [self.pad_token_type_id] * difference
)
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = (
encoded_inputs["special_tokens_mask"] + [1] * difference
)
for i in range(len(encoded_inputs[self.model_input_names[0]])):
encoded_inputs[self.model_input_names[0]][i] = (
required_input[i] + [self.pad_token_id] * difference
)
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [
0
] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [
self.pad_token_type_id
] * difference + encoded_inputs["token_type_ids"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [
1
] * difference + encoded_inputs["special_tokens_mask"]
for i in range(len(encoded_inputs[self.model_input_names[0]])):
encoded_inputs[self.model_input_names[0]][i] = [
self.pad_token_id
] * difference + required_input[i]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
def pad(
self,
encoded_inputs: Union[
BatchEncoding,
List[BatchEncoding],
Dict[str, EncodedInput],
Dict[str, List[EncodedInput]],
List[Dict[str, EncodedInput]],
],
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
) -> BatchEncoding:
"""
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
in the batch.
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
`self.pad_token_id` and `self.pad_token_type_id`).
Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the
text followed by a call to the `pad` method to get a padded encoding.
<Tip>
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
PyTorch tensors, you will lose the specific device of your tensors however.
</Tip>
Args:
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function.
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
the note above for the return type.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
"""
# Problem: The pad function checks if the encoded_inputs is a list or not
# If it is a list it assumes that we have batches
# With ngme encoding the input is always a list
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(encoded_inputs, (list, tuple)) and isinstance(
encoded_inputs[0], Mapping
):
encoded_inputs = {
key: [example[key] for example in encoded_inputs]
for key in encoded_inputs[0].keys()
}
# The model's main input name, usually `input_ids`, has be passed for padding
if self.model_input_names[0] not in encoded_inputs:
raise ValueError(
"You should supply an encoding or a list of encodings to this method "
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
)
required_input = encoded_inputs[self.model_input_names[0]]
if required_input is None or (
isinstance(required_input, Sized) and len(required_input) == 0
):
if return_attention_mask:
encoded_inputs["attention_mask"] = []
return encoded_inputs
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
first_element = required_input[0]
# PHA: First element in ngme is a list of list
if isinstance(first_element, (list, tuple)):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
for item in required_input:
if len(item) != 0:
first_element = item[0]
break
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
if not isinstance(first_element, (int, list, tuple)):
if is_tf_tensor(first_element):
return_tensors = "tf" if return_tensors is None else return_tensors
elif is_torch_tensor(first_element):
return_tensors = "pt" if return_tensors is None else return_tensors
elif isinstance(first_element, np.ndarray):
return_tensors = "np" if return_tensors is None else return_tensors
else:
raise ValueError(
f"type of {first_element} unknown: {type(first_element)}. "
"Should be one of a python, numpy, pytorch or tensorflow object."
)
for key, value in encoded_inputs.items():
encoded_inputs[key] = to_py_obj(value)
# Convert padding_strategy in PaddingStrategy
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
padding=padding, max_length=max_length, verbose=verbose
)
required_input = encoded_inputs[self.model_input_names[0]]
if required_input:
if isinstance(required_input[0], (list, tuple)):
if len(required_input[0]) > 0 and not isinstance(
required_input[0][0], (list, tuple)
):
encoded_inputs = self._pad(
encoded_inputs,
max_length=max_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
batch_size = len(required_input)
assert all(
len(v) == batch_size for v in encoded_inputs.values()
), "Some items in the output dictionary have a different batch size than others."
if padding_strategy == PaddingStrategy.LONGEST:
max_length = max(len(inputs[0]) for inputs in required_input)
padding_strategy = PaddingStrategy.MAX_LENGTH
batch_outputs = {}
for i in range(batch_size):
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
outputs = self._pad(
inputs,
max_length=max_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
def prepare_for_model(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
overflowing tokens. Such a combination of arguments will raise an error.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
(
padding_strategy,
truncation_strategy,
max_length,
kwargs,
) = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
pair = bool(pair_ids is not None)
if len(ids) == 0:
len_ids = 0
else:
len_ids = len(ids[0])
if pair and len(pair_ids) == 0:
len_pair_ids = 0
elif pair and len(pair_ids) > 0:
len_pair_ids = len(pair_ids[0])
else:
len_pair_ids = 0
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
# Compute the total size of the returned encodings
total_len = (
len_ids
+ len_pair_ids
+ (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
)
# Truncation: Handle max sequence length
overflowing_tokens = []
if (
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
and max_length
and total_len > max_length
):
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
ids,
pair_ids=pair_ids,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
else:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionary
encoded_inputs["input_ids"] = sequence
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(
ids, pair_ids
)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
# Check lengths
self._eventual_warn_about_too_long_sequence(
encoded_inputs["input_ids"], max_length, verbose
)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs,
tensor_type=return_tensors,
prepend_batch_axis=prepend_batch_axis,
)
return batch_outputs
def build_inputs_with_special_tokens(
self,
token_ids_0: List[List[int]],
token_ids_1: Optional[List[List[int]]] = None,
) -> List[List[int]]:
"""
Concatenate nested ngram sequences.
Args:
token_ids_0 (`List[List[int]]`): The first tokenized sequence.
token_ids_1 (`List[List[int]]`, *optional*): The second tokenized sequence.
Returns:
`List[List[int]]`: The model input with special tokens.
"""
if token_ids_1 is None or len(token_ids_1) == 0:
return token_ids_0
if len(token_ids_0) == 0:
return token_ids_1
return np.concatenate(
(np.array(token_ids_0), np.array(token_ids_1)), axis=1
).tolist()
def truncate_sequences(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
num_tokens_to_remove: int = 0,
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
stride: int = 0,
) -> Tuple[List[int], List[int], List[int]]:
"""
Truncates a sequence pair in-place following the strategy.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
num_tokens_to_remove (`int`, *optional*, defaults to 0):
Number of tokens to remove using the truncation strategy.
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
The strategy to follow for truncation. Can be:
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).
stride (`int`, *optional*, defaults to 0):
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns:
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.
"""
if num_tokens_to_remove <= 0:
return ids, pair_ids, []
if not isinstance(truncation_strategy, TruncationStrategy):
truncation_strategy = TruncationStrategy(truncation_strategy)
overflowing_tokens = []
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
):
ids = np.array(ids)
# PHA: I think we only truncate with longest first
if ids.shape[1] > num_tokens_to_remove:
window_len = min(ids.shape[1], stride + num_tokens_to_remove)
if self.truncation_side == "left":
overflowing_tokens = ids[:, :window_len]
ids = ids[:, num_tokens_to_remove:]
elif self.truncation_side == "right":
overflowing_tokens = ids[-window_len:]
ids = ids[:, :-num_tokens_to_remove]
else:
raise ValueError(
f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'."
)
ids = ids.tolist()
else:
error_msg = (
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the first sequence has a length {len(ids)}. "
)
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
error_msg = (
error_msg + "Please select another truncation strategy than "
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
)
logger.error(error_msg)
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
logger.warning(
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
"truncation strategy. So the returned list will always be empty even if some "
"tokens have been removed."
)
ids = np.array(ids)
pair_ids = np.array(pair_ids)
for _ in range(num_tokens_to_remove):
if pair_ids is None or ids.shape[1] > pair_ids.shape[1]:
if self.truncation_side == "right":
ids = ids[:, :-1]
elif self.truncation_side == "left":
ids = ids[:, 1:]
else:
raise ValueError(
"invalid truncation strategy:" + str(self.truncation_side)
)
else:
if self.truncation_side == "right":
pair_ids = pair_ids[:, :-1]
elif self.truncation_side == "left":
pair_ids = pair_ids[:, 1:]
else:
raise ValueError(
"invalid truncation strategy:" + str(self.truncation_side)
)
ids = ids.tolist()
pair_ids = pair_ids.tolist()
elif (
truncation_strategy == TruncationStrategy.ONLY_SECOND
and pair_ids is not None
):
raise NotImplementedError(
"PHA: I think we only truncate with longest first"
)
if len(pair_ids) > num_tokens_to_remove:
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
if self.truncation_side == "right":
overflowing_tokens = pair_ids[-window_len:]
pair_ids = pair_ids[:-num_tokens_to_remove]
elif self.truncation_side == "left":
overflowing_tokens = pair_ids[:window_len]
pair_ids = pair_ids[num_tokens_to_remove:]
else:
raise ValueError(
"invalid truncation strategy:" + str(self.truncation_side)
)
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_first'."
)
return (ids, pair_ids, overflowing_tokens)
def _token_to_n_order(self, token: str) -> int:
"""Get N-gram order for a token"""
for n_gram, word2idx in self._ngram2word2idx.items():
if token in word2idx:
return n_gram
return 0
def create_weight_tensor(self) -> torch.Tensor:
unked_freqs = self._frequencies.most_common()
t = torch.ones(len(self))
for token, freq in unked_freqs:
t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq
# Ensure the only whitespace character is weighted
t[self._ngram2word2idx[1][" "]] = 1.0
normed_weights = torch.tensor([(1 - (x / (max(t) + 1))).item() for x in t])
marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram + 1)]
marker_tokens.extend(
[self.get_idx("<start>", n) for n in range(1, self.ngram + 1)]
)
# Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
for marker in marker_tokens:
normed_weights[marker] = 0
return normed_weights
class TestTokenizer(unittest.TestCase):
def test_one(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/1-gram-babylm.json"
t = NGMETokenizer(vocab_file)
self.assertEqual(t.get_idx("<unk>", 1), 1)
result = t("hello world")
self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])
result = t("<unk>")
self.assertEqual(result.input_ids, [1, 13, 5, 24, 1])
result = t(["hello world", "<unk>"])
self.assertEqual(
result.input_ids,
[[16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12], [1, 13, 5, 24, 1]],
)
def test_three(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
t = NGMETokenizer(vocab_file)
result = t("hello world")
self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])
result = t("hello", return_ngram_sequences=True)
result = t(["hello world"], return_ngram_sequences=True)
two_gram_expected = [[16, 208, 229, 230, 231, 1, 1, 312, 257, 499, 306]]
self.assertEqual(result["gram_2_sequence"], two_gram_expected)
self.assertEqual(t._ngram2idx2word[1][16], "h")
self.assertEqual(t._ngram2idx2word[2][208], "he")
self.assertEqual(t._ngram2idx2word[2][229], "el")
def test_unks(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/2-gram-wiki-en.json"
t = NGMETokenizer(vocab_file)
result = t("OciVDjöShG", return_ngram_sequences=True, return_tensors="pt")
def test_decode(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
t = NGMETokenizer(vocab_file)
decoded = t.decode(208)
assert decoded == "he"
def test_padding(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
t = NGMETokenizer(vocab_file)
result = t(
"hello world",
return_tensors="pt",
padding="max_length",
max_length=20,
return_ngram_sequences=True,
)
self.assertEqual(result.input_ids.shape, (1, 20))
self.assertEqual(result.gram_2_sequence.shape, (1, 20))
self.assertEqual(result.gram_3_sequence.shape, (1, 20))
def test_truncation(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
t = NGMETokenizer(vocab_file)
result = t(
"hello world",
return_tensors="pt",
truncation=True,
max_length=5,
return_ngram_sequences=True,
)
self.assertEqual(result.input_ids.shape, (1, 5))
self.assertEqual(result.gram_2_sequence.shape, (1, 5))
def test_padding_and_truncation(self):
vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
t = NGMETokenizer(vocab_file)
result = t(
["four", "something longer"],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=5,
return_ngram_sequences=True,
)
self.assertEqual(result.input_ids.shape, (2, 5))
self.assertEqual(result.gram_2_sequence.shape, (2, 5))
if __name__ == "__main__":
unittest.main()