--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - trl - kto - generated_from_trainer model-index: - name: llama3_false_positives_0609_KTO_hp_screening_seeds results: [] --- # llama3_false_positives_0609_KTO_hp_screening_seeds This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7798 - Eval/rewards/chosen: 0.5857 - Eval/logps/chosen: -186.9679 - Eval/rewards/rejected: 0.0902 - Eval/logps/rejected: -228.9668 - Eval/rewards/margins: 0.4955 - Eval/kl: 5.4514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 1234 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4717 | 0.96 | 12 | 0.7882 | 0.0 | | 0.6064 | 2.0 | 25 | 0.8020 | 0.0 | | 0.2324 | 2.96 | 37 | 0.7275 | 0.0 | | 0.4044 | 4.0 | 50 | 0.7863 | 3.8025 | | 0.1764 | 4.96 | 62 | 0.7797 | 5.4128 | | 0.1937 | 5.76 | 72 | 0.7798 | 5.4514 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.0 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1