--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - trl - kto - generated_from_trainer model-index: - name: llama3_false_positives_0609_KTO_hp_screening_seeds results: [] --- # llama3_false_positives_0609_KTO_hp_screening_seeds This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5033 - Eval/rewards/chosen: 2.8767 - Eval/logps/chosen: -164.0585 - Eval/rewards/rejected: 2.4882 - Eval/logps/rejected: -204.9874 - Eval/rewards/margins: 0.3885 - Eval/kl: 24.2343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 1234 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6591 | 0.96 | 12 | 0.5834 | 0.2291 | | 0.3244 | 2.0 | 25 | 0.5716 | 15.3529 | | 0.0459 | 2.96 | 37 | 0.5362 | 20.4863 | | 0.07 | 4.0 | 50 | 0.5089 | 23.8717 | | 0.0208 | 4.96 | 62 | 0.4999 | 24.2550 | | 0.0416 | 5.76 | 72 | 0.5033 | 24.2343 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.0 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1