--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - trl - kto - generated_from_trainer model-index: - name: llama3_false_positives_1101_KTO_optimised_model results: [] --- # llama3_false_positives_1101_KTO_optimised_model This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5288 - Rewards/chosen: 0.5981 - Logps/chosen: -45.9608 - Rewards/rejected: -0.3258 - Logps/rejected: -56.8765 - Rewards/margins: 0.9238 - Kl: 0.0439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Logps/chosen | Rewards/rejected | Logps/rejected | Rewards/margins | Kl | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:------------:|:----------------:|:--------------:|:---------------:|:------:| | 0.4886 | 0.96 | 12 | 0.6709 | 0.1420 | -50.5211 | 0.0978 | -52.6405 | 0.0442 | 0.1381 | | 0.5124 | 2.0 | 25 | 0.5966 | 0.3060 | -48.8816 | -0.1760 | -55.3786 | 0.4819 | 0.0375 | | 0.3647 | 2.96 | 37 | 0.5552 | 0.4908 | -47.0331 | -0.2555 | -56.1745 | 0.7464 | 0.0447 | | 0.3725 | 4.0 | 50 | 0.5239 | 0.5506 | -46.4352 | -0.3964 | -57.5829 | 0.9470 | 0.0317 | | 0.3249 | 4.96 | 62 | 0.5300 | 0.5839 | -46.1019 | -0.3309 | -56.9280 | 0.9148 | 0.0409 | | 0.3262 | 5.76 | 72 | 0.5288 | 0.5981 | -45.9608 | -0.3258 | -56.8765 | 0.9238 | 0.0439 | ### Framework versions - PEFT 0.11.1 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.15.2