Update README.md
Browse files
README.md
CHANGED
@@ -23,37 +23,45 @@ The model has demonstrated robust performance with an accuracy of 0.721459, F1 s
|
|
23 |
## Model Architecture
|
24 |
The model leverages the BertForSequenceClassification architecture, It has been fine-tuned on the aforementioned dataset, with the following key configuration parameters:
|
25 |
|
26 |
-
Hidden size: 768
|
27 |
-
Number of attention heads: 12
|
28 |
-
Number of hidden layers: 12
|
29 |
-
Max position embeddings: 512
|
30 |
-
Type vocab size: 2
|
31 |
-
Vocab size: 30522
|
32 |
-
The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
|
33 |
|
34 |
## Example
|
35 |
|
36 |
```from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification```
|
37 |
-
```from transformers import AutoTokenizer
|
38 |
-
```import numpy as np
|
39 |
-
```from scipy.special import expit
|
40 |
|
41 |
|
42 |
-
```MODEL = f"PavanDeepak/Topic_Classification"
|
43 |
-
```tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
44 |
|
45 |
-
```model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
46 |
-
```class_mapping = model.config.id2label
|
47 |
|
48 |
-
```text = "I love chicken manchuria"
|
49 |
-
```tokens = tokenizer(text, return_tensors='pt')
|
50 |
-
```output = model(**tokens)
|
51 |
|
52 |
-
```scores = output[0][0].detach().numpy()
|
53 |
-
```scores = expit(scores)
|
54 |
-
```predictions = (scores >= 0.5) * 1
|
55 |
|
56 |
|
57 |
-
```for i in range(len(predictions))
|
58 |
-
```if predictions[i]
|
59 |
-
```print(class_mapping[i])```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
## Model Architecture
|
24 |
The model leverages the BertForSequenceClassification architecture, It has been fine-tuned on the aforementioned dataset, with the following key configuration parameters:
|
25 |
|
26 |
+
* Hidden size: 768
|
27 |
+
* Number of attention heads: 12
|
28 |
+
* Number of hidden layers: 12
|
29 |
+
* Max position embeddings: 512
|
30 |
+
* Type vocab size: 2
|
31 |
+
* Vocab size: 30522
|
32 |
+
* The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
|
33 |
|
34 |
## Example
|
35 |
|
36 |
```from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification```
|
37 |
+
```from transformers import AutoTokenizer```
|
38 |
+
```import numpy as np```
|
39 |
+
```from scipy.special import expit```
|
40 |
|
41 |
|
42 |
+
```MODEL = f"PavanDeepak/Topic_Classification"```
|
43 |
+
```tokenizer = AutoTokenizer.from_pretrained(MODEL)```
|
44 |
|
45 |
+
```model = AutoModelForSequenceClassification.from_pretrained(MODEL)```
|
46 |
+
```class_mapping = model.config.id2label```
|
47 |
|
48 |
+
```text = "I love chicken manchuria"```
|
49 |
+
```tokens = tokenizer(text, return_tensors='pt')```
|
50 |
+
```output = model(**tokens)```
|
51 |
|
52 |
+
```scores = output[0][0].detach().numpy()```
|
53 |
+
```scores = expit(scores)```
|
54 |
+
```predictions = (scores >= 0.5) * 1```
|
55 |
|
56 |
|
57 |
+
```for i in range(len(predictions)):```
|
58 |
+
```if predictions[i]:```
|
59 |
+
```print(class_mapping[i])```
|
60 |
+
|
61 |
+
## Output:
|
62 |
+
|
63 |
+
* Food
|
64 |
+
* Videogames & Shows
|
65 |
+
* Homestyle
|
66 |
+
* Travel
|
67 |
+
* Health
|