PavanDeepak commited on
Commit
89883b6
·
verified ·
1 Parent(s): 42f079c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -1
README.md CHANGED
@@ -29,4 +29,31 @@ Number of hidden layers: 12
29
  Max position embeddings: 512
30
  Type vocab size: 2
31
  Vocab size: 30522
32
- The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  Max position embeddings: 512
30
  Type vocab size: 2
31
  Vocab size: 30522
32
+ The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
33
+
34
+ ## Example
35
+
36
+ ```from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
37
+ from transformers import AutoTokenizer
38
+ import numpy as np
39
+ from scipy.special import expit
40
+
41
+
42
+ MODEL = f"PavanDeepak/Topic_Classification"
43
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
46
+ class_mapping = model.config.id2label
47
+
48
+ text = "I love chicken manchuria"
49
+ tokens = tokenizer(text, return_tensors='pt')
50
+ output = model(**tokens)
51
+
52
+ scores = output[0][0].detach().numpy()
53
+ scores = expit(scores)
54
+ predictions = (scores >= 0.5) * 1
55
+
56
+
57
+ for i in range(len(predictions)):
58
+ if predictions[i]:
59
+ print(class_mapping[i])```