Update README.md
Browse files
README.md
CHANGED
@@ -29,4 +29,31 @@ Number of hidden layers: 12
|
|
29 |
Max position embeddings: 512
|
30 |
Type vocab size: 2
|
31 |
Vocab size: 30522
|
32 |
-
The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
Max position embeddings: 512
|
30 |
Type vocab size: 2
|
31 |
Vocab size: 30522
|
32 |
+
The model uses the GELU activation function in its hidden layers and applies dropout with a probability of 0.1 to the attention probabilities to prevent overfitting.
|
33 |
+
|
34 |
+
## Example
|
35 |
+
|
36 |
+
```from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
|
37 |
+
from transformers import AutoTokenizer
|
38 |
+
import numpy as np
|
39 |
+
from scipy.special import expit
|
40 |
+
|
41 |
+
|
42 |
+
MODEL = f"PavanDeepak/Topic_Classification"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
44 |
+
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
46 |
+
class_mapping = model.config.id2label
|
47 |
+
|
48 |
+
text = "I love chicken manchuria"
|
49 |
+
tokens = tokenizer(text, return_tensors='pt')
|
50 |
+
output = model(**tokens)
|
51 |
+
|
52 |
+
scores = output[0][0].detach().numpy()
|
53 |
+
scores = expit(scores)
|
54 |
+
predictions = (scores >= 0.5) * 1
|
55 |
+
|
56 |
+
|
57 |
+
for i in range(len(predictions)):
|
58 |
+
if predictions[i]:
|
59 |
+
print(class_mapping[i])```
|