PavanDeepak commited on
Commit
df9298c
·
verified ·
1 Parent(s): 63c50df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -28
README.md CHANGED
@@ -33,35 +33,31 @@ The model leverages the BertForSequenceClassification architecture, It has been
33
 
34
  ## Example
35
 
36
- ```from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- ```from transformers import AutoTokenizer```
39
-
40
- ```import numpy as np```
41
-
42
- ```from scipy.special import expit```
43
-
44
-
45
- ```MODEL = f"PavanDeepak/Topic_Classification"```
46
- ```tokenizer = AutoTokenizer.from_pretrained(MODEL)```
47
-
48
- ```model = AutoModelForSequenceClassification.from_pretrained(MODEL)```
49
- ```class_mapping = model.config.id2label```
50
-
51
- ```text = "I love chicken manchuria"```
52
- ```tokens = tokenizer(text, return_tensors='pt')```
53
- ```output = model(**tokens)```
54
-
55
- ```scores = output[0][0].detach().numpy()```
56
- ```scores = expit(scores)```
57
- ```predictions = (scores >= 0.5) * 1```
58
-
59
-
60
- ```for i in range(len(predictions)):```
61
-
62
- ``` if predictions[i]:```
63
-
64
- ``` print(class_mapping[i])```
65
 
66
  ## Output:
67
 
 
33
 
34
  ## Example
35
 
36
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
37
+ import numpy as np
38
+ from scipy.special import expit
39
+
40
+ ### Load the pre-trained model and tokenizer
41
+ MODEL = "PavanDeepak/Topic_Classification"
42
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
43
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
44
+ class_mapping = model.config.id2label
45
+
46
+ ### Example text
47
+ text = "I love chicken manchuria"
48
+ tokens = tokenizer(text, return_tensors="pt")
49
+ output = model(**tokens)
50
+
51
+ ### Get scores and predictions
52
+ scores = output.logits[0][0].detach().numpy()
53
+ scores = expit(scores)
54
+ predictions = (scores >= 0.5) * 1
55
+
56
+ ### Print predicted labels
57
+ for i in range(len(predictions)):
58
+ if predictions[i]:
59
+ print(class_mapping[i])
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ## Output:
63