PavanNeerudu
commited on
Commit
·
f0ad688
1
Parent(s):
7453612
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- xsum
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: t5-base-finetuned-xsum
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Summarization
|
14 |
+
type: text-summarization
|
15 |
+
dataset:
|
16 |
+
name: Xsum
|
17 |
+
type: xsum
|
18 |
+
args: xsum
|
19 |
+
metrics:
|
20 |
+
- name: rouge
|
21 |
+
type: rouge
|
22 |
+
value: 0.3414
|
23 |
+
---
|
24 |
+
|
25 |
+
|
26 |
+
# gpt2-finetuned-xsum
|
27 |
+
|
28 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
29 |
+
|
30 |
+
This model is t5-base fine-tuned on Xsum dataset for text summarization.
|
31 |
+
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
|
35 |
+
|
36 |
+
## Training Procedure
|
37 |
+
To train the T5 model for text-summarization, I have used "summarize" prefix before every sentence and gave the encoding of this sentence as input ids and attention mask.
|
38 |
+
For the labels, I used the encoding of the summaries as the decoder input ids and decoder attention mask.
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
## Usage:
|
43 |
+
For generating summaries on a example use:
|
44 |
+
```python
|
45 |
+
predictions = []
|
46 |
+
tokenised_dataset = tokenizer(documents, truncation=True, padding='max_length', max_length=1024, return_tensors='pt')
|
47 |
+
source_ids = tokenised_dataset['input_ids']
|
48 |
+
source_mask = tokenised_dataset['attention_mask']
|
49 |
+
output = model.generate(input_ids=source_ids, attention_mask=source_mask, max_length=256)
|
50 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
51 |
+
```
|
52 |
+
|
53 |
+
## Experiments
|
54 |
+
We report the ROUGE-1, ROUGE-2 and ROUGE-L on the test datasets.
|
55 |
+
|
56 |
+
### Xsum
|
57 |
+
| ROUGE-1 | ROUGE-2| ROUGE-L|
|
58 |
+
|---------|--------|--------|
|
59 |
+
| 0.3414 | 0.1260 | 0.2832 |
|