Pavarissy commited on
Commit
1ebd810
·
1 Parent(s): bfb21f9

Pavarissy/wangchanberta-ud-thai-pud-upos

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: airesearch/wangchanberta-base-att-spm-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - universal_dependencies
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: wangchanberta-ud-thai-pud-upos
11
+ results:
12
+ - task:
13
+ name: Token Classification
14
+ type: token-classification
15
+ dataset:
16
+ name: universal_dependencies
17
+ type: universal_dependencies
18
+ config: th_pud
19
+ split: test
20
+ args: th_pud
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9883334914161055
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wangchanberta-ud-thai-pud-upos
31
+
32
+ This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the universal_dependencies dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0442
35
+ - Macro avg precision: 0.9221
36
+ - Macro avg recall: 0.9178
37
+ - Macro avg f1: 0.9199
38
+ - Weighted avg precision: 0.9883
39
+ - Weighted avg recall: 0.9883
40
+ - Weighted avg f1: 0.9883
41
+ - Accuracy: 0.9883
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 10
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Macro avg precision | Macro avg recall | Macro avg f1 | Weighted avg precision | Weighted avg recall | Weighted avg f1 | Accuracy |
71
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------------:|:-------------------:|:---------------:|:--------:|
72
+ | No log | 1.0 | 125 | 0.5563 | 0.8103 | 0.7235 | 0.7552 | 0.8574 | 0.8522 | 0.8495 | 0.8522 |
73
+ | No log | 2.0 | 250 | 0.2316 | 0.8701 | 0.8460 | 0.8564 | 0.9320 | 0.9315 | 0.9310 | 0.9315 |
74
+ | No log | 3.0 | 375 | 0.1635 | 0.8903 | 0.8729 | 0.8809 | 0.9511 | 0.9511 | 0.9508 | 0.9511 |
75
+ | 0.5782 | 4.0 | 500 | 0.1112 | 0.9037 | 0.8964 | 0.8998 | 0.9687 | 0.9685 | 0.9685 | 0.9685 |
76
+ | 0.5782 | 5.0 | 625 | 0.0860 | 0.9110 | 0.9050 | 0.9079 | 0.9752 | 0.9752 | 0.9751 | 0.9752 |
77
+ | 0.5782 | 6.0 | 750 | 0.0675 | 0.9160 | 0.9103 | 0.9131 | 0.9815 | 0.9814 | 0.9814 | 0.9814 |
78
+ | 0.5782 | 7.0 | 875 | 0.0588 | 0.9189 | 0.9138 | 0.9163 | 0.9839 | 0.9839 | 0.9839 | 0.9839 |
79
+ | 0.1073 | 8.0 | 1000 | 0.0514 | 0.9214 | 0.9155 | 0.9184 | 0.9858 | 0.9858 | 0.9858 | 0.9858 |
80
+ | 0.1073 | 9.0 | 1125 | 0.0463 | 0.9225 | 0.9171 | 0.9197 | 0.9877 | 0.9876 | 0.9876 | 0.9876 |
81
+ | 0.1073 | 10.0 | 1250 | 0.0442 | 0.9221 | 0.9178 | 0.9199 | 0.9883 | 0.9883 | 0.9883 | 0.9883 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.34.1
87
+ - Pytorch 2.1.0+cu118
88
+ - Datasets 2.14.6
89
+ - Tokenizers 0.14.1