File size: 3,246 Bytes
b19e0da
 
 
 
 
2406ec4
 
 
 
b19e0da
 
 
 
 
 
 
 
 
 
 
2406ec4
8e66f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406ec4
8e66f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406ec4
8e66f8c
 
 
 
 
 
2406ec4
8e66f8c
2406ec4
8e66f8c
 
 
2406ec4
b19e0da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
base_model: microsoft/layoutlm-large-uncased
tags:
- generated_from_trainer
metrics:
- f1
- recall
- precision
model-index:
- name: Layoutlmlargetest
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Layoutlmlargetest

This model is a fine-tuned version of [microsoft/layoutlm-large-uncased](https://huggingface.co/microsoft/layoutlm-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8743
- F1: 0.7462
- Recall: 0.7244
- Precision: 0.7693
- Pred Bestellnummer: 147
- Percentage Pred Act Bestellnummer: 1.0280
- Pred Kundennr.: 56
- Percentage Pred Act Kundennr.: 1.1667
- Pred Bezug 1: 26
- Percentage Pred Act Bezug 1: 1.8571
- Pred Modell 1: 96
- Percentage Pred Act Modell 1: 0.9697
- Pred Menge1: 25
- Percentage Pred Act Menge1: 1.1905
- Pred Menge4: 13
- Percentage Pred Act Menge4: 1.3
- Pred Möbelhaus: 94
- Percentage Pred Act Möbelhaus: 1.0330
- Pred Termin kundenwunsch - kw: 28
- Percentage Pred Act Termin kundenwunsch - kw: 0.875
- Pred Kommission: 57
- Percentage Pred Act Kommission: 0.9828
- Pred Holz 1: 22
- Percentage Pred Act Holz 1: 1.1579
- Pred Modell 2: 64
- Percentage Pred Act Modell 2: 1.0323
- Pred Zusatz 1: 14
- Percentage Pred Act Zusatz 1: 1.0
- Pred La-anschrift: 6
- Percentage Pred Act La-anschrift: 1.0
- Pred Bezug 2: 2
- Percentage Pred Act Bezug 2: 0.1538
- Pred Holz 2: 25
- Percentage Pred Act Holz 2: 1.1905
- Pred Menge3: 30
- Percentage Pred Act Menge3: 1.3636
- Pred Modell 3: 77
- Percentage Pred Act Modell 3: 1.1667
- Pred Bezug 4: 1
- Percentage Pred Act Bezug 4: 0.1429
- Pred Menge2: 9
- Percentage Pred Act Menge2: 0.5
- Pred Var-ausf 1: 8
- Percentage Pred Act Var-ausf 1: 1.0
- Pred Bezug 3: 9
- Percentage Pred Act Bezug 3: 2.25
- Act Bestellnummer: 143
- Act Kundennr.: 48
- Act Bezug 1: 14
- Act Modell 1: 99
- Act Menge1: 21
- Act Menge4: 10
- Act Möbelhaus: 91
- Act Bezug 2: 13
- Act Zusatz 2: 1
- Act Termin kundenwunsch - kw: 32
- Act Kommission: 58
- Act Holz 1: 19
- Act Menge3: 22
- Act Modell 2: 62
- Act Modell 3: 66
- Act Modell 4: 6
- Act Bezug 4: 7
- Act Zusatz 3: 1
- Act Holz 2: 21
- Act Menge2: 18
- Act Bezug 3: 4
- Act Var-ausf 1: 8
- Act Holz 3: 5
- Act Zusatz 1: 14
- Act Var-ausf. 2: 7
- Act Var-ausf. 3: 4
- Act Pv 3: 1
- Act Holz 4: 1
- Act Var-ausf. 5: 1
- Act Modell 5: 5
- Act La-anschrift: 6
- Act Menge5: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.53.0.dev0
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1