--- base_model: intfloat/e5-large-v2 language: - en license: mit tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers - llama-cpp - gguf-my-repo model-index: - name: e5-large-v2 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.22388059701493 - type: ap value: 43.20816505595132 - type: f1 value: 73.27811303522058 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.748325 - type: ap value: 90.72534979701297 - type: f1 value: 93.73895874282185 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.612 - type: f1 value: 47.61157345898393 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 23.541999999999998 - type: map_at_10 value: 38.208 - type: map_at_100 value: 39.417 - type: map_at_1000 value: 39.428999999999995 - type: map_at_3 value: 33.95 - type: map_at_5 value: 36.329 - type: mrr_at_1 value: 23.755000000000003 - type: mrr_at_10 value: 38.288 - type: mrr_at_100 value: 39.511 - type: mrr_at_1000 value: 39.523 - type: mrr_at_3 value: 34.009 - type: mrr_at_5 value: 36.434 - type: ndcg_at_1 value: 23.541999999999998 - type: ndcg_at_10 value: 46.417 - type: ndcg_at_100 value: 51.812000000000005 - type: ndcg_at_1000 value: 52.137 - type: ndcg_at_3 value: 37.528 - type: ndcg_at_5 value: 41.81 - type: precision_at_1 value: 23.541999999999998 - type: precision_at_10 value: 7.269 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.979 - type: precision_at_5 value: 11.664 - type: recall_at_1 value: 23.541999999999998 - type: recall_at_10 value: 72.688 - type: recall_at_100 value: 96.871 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 47.937000000000005 - type: recall_at_5 value: 58.321 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.546499570522094 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 41.01607489943561 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.616107510107774 - type: mrr value: 72.75106626214661 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.33018094733868 - type: cos_sim_spearman value: 83.60190492611737 - type: euclidean_pearson value: 82.1492450218961 - type: euclidean_spearman value: 82.70308926526991 - type: manhattan_pearson value: 81.93959600076842 - type: manhattan_spearman value: 82.73260801016369 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.54545454545455 - type: f1 value: 84.49582530928923 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.362725540120096 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.849509608178145 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 31.502999999999997 - type: map_at_10 value: 43.323 - type: map_at_100 value: 44.708999999999996 - type: map_at_1000 value: 44.838 - type: map_at_3 value: 38.987 - type: map_at_5 value: 41.516999999999996 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 49.13 - type: mrr_at_100 value: 49.697 - type: mrr_at_1000 value: 49.741 - type: mrr_at_3 value: 45.804 - type: mrr_at_5 value: 47.842 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 50.266999999999996 - type: ndcg_at_100 value: 54.967 - type: ndcg_at_1000 value: 56.976000000000006 - type: ndcg_at_3 value: 43.823 - type: ndcg_at_5 value: 47.12 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 10.057 - type: precision_at_100 value: 1.554 - type: precision_at_1000 value: 0.202 - type: precision_at_3 value: 21.125 - type: precision_at_5 value: 15.851 - type: recall_at_1 value: 31.502999999999997 - type: recall_at_10 value: 63.715999999999994 - type: recall_at_100 value: 83.61800000000001 - type: recall_at_1000 value: 96.63199999999999 - type: recall_at_3 value: 45.403 - type: recall_at_5 value: 54.481 - type: map_at_1 value: 27.833000000000002 - type: map_at_10 value: 37.330999999999996 - type: map_at_100 value: 38.580999999999996 - type: map_at_1000 value: 38.708 - type: map_at_3 value: 34.713 - type: map_at_5 value: 36.104 - type: mrr_at_1 value: 35.223 - type: mrr_at_10 value: 43.419000000000004 - type: mrr_at_100 value: 44.198 - type: mrr_at_1000 value: 44.249 - type: mrr_at_3 value: 41.614000000000004 - type: mrr_at_5 value: 42.553000000000004 - type: ndcg_at_1 value: 35.223 - type: ndcg_at_10 value: 42.687999999999995 - type: ndcg_at_100 value: 47.447 - type: ndcg_at_1000 value: 49.701 - type: ndcg_at_3 value: 39.162 - type: ndcg_at_5 value: 40.557 - type: precision_at_1 value: 35.223 - type: precision_at_10 value: 7.962 - type: precision_at_100 value: 1.304 - type: precision_at_1000 value: 0.18 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.184999999999999 - type: recall_at_1 value: 27.833000000000002 - type: recall_at_10 value: 51.881 - type: recall_at_100 value: 72.04 - type: recall_at_1000 value: 86.644 - type: recall_at_3 value: 40.778 - type: recall_at_5 value: 45.176 - type: map_at_1 value: 38.175 - type: map_at_10 value: 51.174 - type: map_at_100 value: 52.26499999999999 - type: map_at_1000 value: 52.315999999999995 - type: map_at_3 value: 47.897 - type: map_at_5 value: 49.703 - type: mrr_at_1 value: 43.448 - type: mrr_at_10 value: 54.505 - type: mrr_at_100 value: 55.216 - type: mrr_at_1000 value: 55.242000000000004 - type: mrr_at_3 value: 51.98500000000001 - type: mrr_at_5 value: 53.434000000000005 - type: ndcg_at_1 value: 43.448 - type: ndcg_at_10 value: 57.282 - type: ndcg_at_100 value: 61.537 - type: ndcg_at_1000 value: 62.546 - type: ndcg_at_3 value: 51.73799999999999 - type: ndcg_at_5 value: 54.324 - type: precision_at_1 value: 43.448 - type: precision_at_10 value: 9.292 - type: precision_at_100 value: 1.233 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 23.218 - type: precision_at_5 value: 15.887 - type: recall_at_1 value: 38.175 - type: recall_at_10 value: 72.00999999999999 - type: recall_at_100 value: 90.155 - type: recall_at_1000 value: 97.257 - type: recall_at_3 value: 57.133 - type: recall_at_5 value: 63.424 - type: map_at_1 value: 22.405 - type: map_at_10 value: 30.043 - type: map_at_100 value: 31.191000000000003 - type: map_at_1000 value: 31.275 - type: map_at_3 value: 27.034000000000002 - type: map_at_5 value: 28.688000000000002 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.993 - type: mrr_at_100 value: 32.992 - type: mrr_at_1000 value: 33.050000000000004 - type: mrr_at_3 value: 28.964000000000002 - type: mrr_at_5 value: 30.653000000000002 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 35.198 - type: ndcg_at_100 value: 40.709 - type: ndcg_at_1000 value: 42.855 - type: ndcg_at_3 value: 29.139 - type: ndcg_at_5 value: 32.045 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.65 - type: precision_at_100 value: 0.885 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.994 - type: recall_at_1 value: 22.405 - type: recall_at_10 value: 49.391 - type: recall_at_100 value: 74.53699999999999 - type: recall_at_1000 value: 90.605 - type: recall_at_3 value: 33.126 - type: recall_at_5 value: 40.073 - type: map_at_1 value: 13.309999999999999 - type: map_at_10 value: 20.688000000000002 - type: map_at_100 value: 22.022 - type: map_at_1000 value: 22.152 - type: map_at_3 value: 17.954 - type: map_at_5 value: 19.439 - type: mrr_at_1 value: 16.294 - type: mrr_at_10 value: 24.479 - type: mrr_at_100 value: 25.515 - type: mrr_at_1000 value: 25.593 - type: mrr_at_3 value: 21.642 - type: mrr_at_5 value: 23.189999999999998 - type: ndcg_at_1 value: 16.294 - type: ndcg_at_10 value: 25.833000000000002 - type: ndcg_at_100 value: 32.074999999999996 - type: ndcg_at_1000 value: 35.083 - type: ndcg_at_3 value: 20.493 - type: ndcg_at_5 value: 22.949 - type: precision_at_1 value: 16.294 - type: precision_at_10 value: 5.112 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 9.908999999999999 - type: precision_at_5 value: 7.587000000000001 - type: recall_at_1 value: 13.309999999999999 - type: recall_at_10 value: 37.851 - type: recall_at_100 value: 64.835 - type: recall_at_1000 value: 86.334 - type: recall_at_3 value: 23.493 - type: recall_at_5 value: 29.528 - type: map_at_1 value: 25.857999999999997 - type: map_at_10 value: 35.503 - type: map_at_100 value: 36.957 - type: map_at_1000 value: 37.065 - type: map_at_3 value: 32.275999999999996 - type: map_at_5 value: 34.119 - type: mrr_at_1 value: 31.954 - type: mrr_at_10 value: 40.851 - type: mrr_at_100 value: 41.863 - type: mrr_at_1000 value: 41.900999999999996 - type: mrr_at_3 value: 38.129999999999995 - type: mrr_at_5 value: 39.737 - type: ndcg_at_1 value: 31.954 - type: ndcg_at_10 value: 41.343999999999994 - type: ndcg_at_100 value: 47.397 - type: ndcg_at_1000 value: 49.501 - type: ndcg_at_3 value: 36.047000000000004 - type: ndcg_at_5 value: 38.639 - type: precision_at_1 value: 31.954 - type: precision_at_10 value: 7.68 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 17.132 - type: precision_at_5 value: 12.589 - type: recall_at_1 value: 25.857999999999997 - type: recall_at_10 value: 53.43599999999999 - type: recall_at_100 value: 78.82400000000001 - type: recall_at_1000 value: 92.78999999999999 - type: recall_at_3 value: 38.655 - type: recall_at_5 value: 45.216 - type: map_at_1 value: 24.709 - type: map_at_10 value: 34.318 - type: map_at_100 value: 35.657 - type: map_at_1000 value: 35.783 - type: map_at_3 value: 31.326999999999998 - type: map_at_5 value: 33.021 - type: mrr_at_1 value: 30.137000000000004 - type: mrr_at_10 value: 39.093 - type: mrr_at_100 value: 39.992 - type: mrr_at_1000 value: 40.056999999999995 - type: mrr_at_3 value: 36.606 - type: mrr_at_5 value: 37.861 - type: ndcg_at_1 value: 30.137000000000004 - type: ndcg_at_10 value: 39.974 - type: ndcg_at_100 value: 45.647999999999996 - type: ndcg_at_1000 value: 48.259 - type: ndcg_at_3 value: 35.028 - type: ndcg_at_5 value: 37.175999999999995 - type: precision_at_1 value: 30.137000000000004 - type: precision_at_10 value: 7.363 - type: precision_at_100 value: 1.184 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 16.857 - type: precision_at_5 value: 11.963 - type: recall_at_1 value: 24.709 - type: recall_at_10 value: 52.087 - type: recall_at_100 value: 76.125 - type: recall_at_1000 value: 93.82300000000001 - type: recall_at_3 value: 38.149 - type: recall_at_5 value: 43.984 - type: map_at_1 value: 23.40791666666667 - type: map_at_10 value: 32.458083333333335 - type: map_at_100 value: 33.691916666666664 - type: map_at_1000 value: 33.81191666666666 - type: map_at_3 value: 29.51625 - type: map_at_5 value: 31.168083333333335 - type: mrr_at_1 value: 27.96591666666666 - type: mrr_at_10 value: 36.528583333333344 - type: mrr_at_100 value: 37.404 - type: mrr_at_1000 value: 37.464333333333336 - type: mrr_at_3 value: 33.92883333333333 - type: mrr_at_5 value: 35.41933333333333 - type: ndcg_at_1 value: 27.96591666666666 - type: ndcg_at_10 value: 37.89141666666666 - type: ndcg_at_100 value: 43.23066666666666 - type: ndcg_at_1000 value: 45.63258333333333 - type: ndcg_at_3 value: 32.811249999999994 - type: ndcg_at_5 value: 35.22566666666667 - type: precision_at_1 value: 27.96591666666666 - type: precision_at_10 value: 6.834083333333332 - type: precision_at_100 value: 1.12225 - type: precision_at_1000 value: 0.15241666666666667 - type: precision_at_3 value: 15.264333333333335 - type: precision_at_5 value: 11.039416666666666 - type: recall_at_1 value: 23.40791666666667 - type: recall_at_10 value: 49.927083333333336 - type: recall_at_100 value: 73.44641666666668 - type: recall_at_1000 value: 90.19950000000001 - type: recall_at_3 value: 35.88341666666667 - type: recall_at_5 value: 42.061249999999994 - type: map_at_1 value: 19.592000000000002 - type: map_at_10 value: 26.895999999999997 - type: map_at_100 value: 27.921000000000003 - type: map_at_1000 value: 28.02 - type: map_at_3 value: 24.883 - type: map_at_5 value: 25.812 - type: mrr_at_1 value: 22.698999999999998 - type: mrr_at_10 value: 29.520999999999997 - type: mrr_at_100 value: 30.458000000000002 - type: mrr_at_1000 value: 30.526999999999997 - type: mrr_at_3 value: 27.633000000000003 - type: mrr_at_5 value: 28.483999999999998 - type: ndcg_at_1 value: 22.698999999999998 - type: ndcg_at_10 value: 31.061 - type: ndcg_at_100 value: 36.398 - type: ndcg_at_1000 value: 38.89 - type: ndcg_at_3 value: 27.149 - type: ndcg_at_5 value: 28.627000000000002 - type: precision_at_1 value: 22.698999999999998 - type: precision_at_10 value: 5.106999999999999 - type: precision_at_100 value: 0.857 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 11.963 - type: precision_at_5 value: 8.221 - type: recall_at_1 value: 19.592000000000002 - type: recall_at_10 value: 41.329 - type: recall_at_100 value: 66.094 - type: recall_at_1000 value: 84.511 - type: recall_at_3 value: 30.61 - type: recall_at_5 value: 34.213 - type: map_at_1 value: 14.71 - type: map_at_10 value: 20.965 - type: map_at_100 value: 21.994 - type: map_at_1000 value: 22.133 - type: map_at_3 value: 18.741 - type: map_at_5 value: 19.951 - type: mrr_at_1 value: 18.307000000000002 - type: mrr_at_10 value: 24.66 - type: mrr_at_100 value: 25.540000000000003 - type: mrr_at_1000 value: 25.629 - type: mrr_at_3 value: 22.511 - type: mrr_at_5 value: 23.72 - type: ndcg_at_1 value: 18.307000000000002 - type: ndcg_at_10 value: 25.153 - type: ndcg_at_100 value: 30.229 - type: ndcg_at_1000 value: 33.623 - type: ndcg_at_3 value: 21.203 - type: ndcg_at_5 value: 23.006999999999998 - type: precision_at_1 value: 18.307000000000002 - type: precision_at_10 value: 4.725 - type: precision_at_100 value: 0.8659999999999999 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 10.14 - type: precision_at_5 value: 7.481 - type: recall_at_1 value: 14.71 - type: recall_at_10 value: 34.087 - type: recall_at_100 value: 57.147999999999996 - type: recall_at_1000 value: 81.777 - type: recall_at_3 value: 22.996 - type: recall_at_5 value: 27.73 - type: map_at_1 value: 23.472 - type: map_at_10 value: 32.699 - type: map_at_100 value: 33.867000000000004 - type: map_at_1000 value: 33.967000000000006 - type: map_at_3 value: 29.718 - type: map_at_5 value: 31.345 - type: mrr_at_1 value: 28.265 - type: mrr_at_10 value: 36.945 - type: mrr_at_100 value: 37.794 - type: mrr_at_1000 value: 37.857 - type: mrr_at_3 value: 34.266000000000005 - type: mrr_at_5 value: 35.768 - type: ndcg_at_1 value: 28.265 - type: ndcg_at_10 value: 38.35 - type: ndcg_at_100 value: 43.739 - type: ndcg_at_1000 value: 46.087 - type: ndcg_at_3 value: 33.004 - type: ndcg_at_5 value: 35.411 - type: precision_at_1 value: 28.265 - type: precision_at_10 value: 6.715999999999999 - type: precision_at_100 value: 1.059 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 15.299 - type: precision_at_5 value: 10.951 - type: recall_at_1 value: 23.472 - type: recall_at_10 value: 51.413 - type: recall_at_100 value: 75.17 - type: recall_at_1000 value: 91.577 - type: recall_at_3 value: 36.651 - type: recall_at_5 value: 42.814 - type: map_at_1 value: 23.666 - type: map_at_10 value: 32.963 - type: map_at_100 value: 34.544999999999995 - type: map_at_1000 value: 34.792 - type: map_at_3 value: 29.74 - type: map_at_5 value: 31.5 - type: mrr_at_1 value: 29.051 - type: mrr_at_10 value: 38.013000000000005 - type: mrr_at_100 value: 38.997 - type: mrr_at_1000 value: 39.055 - type: mrr_at_3 value: 34.947 - type: mrr_at_5 value: 36.815 - type: ndcg_at_1 value: 29.051 - type: ndcg_at_10 value: 39.361000000000004 - type: ndcg_at_100 value: 45.186 - type: ndcg_at_1000 value: 47.867 - type: ndcg_at_3 value: 33.797 - type: ndcg_at_5 value: 36.456 - type: precision_at_1 value: 29.051 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.532 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 15.876000000000001 - type: precision_at_5 value: 11.779 - type: recall_at_1 value: 23.666 - type: recall_at_10 value: 51.858000000000004 - type: recall_at_100 value: 77.805 - type: recall_at_1000 value: 94.504 - type: recall_at_3 value: 36.207 - type: recall_at_5 value: 43.094 - type: map_at_1 value: 15.662 - type: map_at_10 value: 23.594 - type: map_at_100 value: 24.593999999999998 - type: map_at_1000 value: 24.694 - type: map_at_3 value: 20.925 - type: map_at_5 value: 22.817999999999998 - type: mrr_at_1 value: 17.375 - type: mrr_at_10 value: 25.734 - type: mrr_at_100 value: 26.586 - type: mrr_at_1000 value: 26.671 - type: mrr_at_3 value: 23.044 - type: mrr_at_5 value: 24.975 - type: ndcg_at_1 value: 17.375 - type: ndcg_at_10 value: 28.186 - type: ndcg_at_100 value: 33.436 - type: ndcg_at_1000 value: 36.203 - type: ndcg_at_3 value: 23.152 - type: ndcg_at_5 value: 26.397 - type: precision_at_1 value: 17.375 - type: precision_at_10 value: 4.677 - type: precision_at_100 value: 0.786 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.985 - type: recall_at_1 value: 15.662 - type: recall_at_10 value: 40.066 - type: recall_at_100 value: 65.006 - type: recall_at_1000 value: 85.94000000000001 - type: recall_at_3 value: 27.400000000000002 - type: recall_at_5 value: 35.002 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 8.853 - type: map_at_10 value: 15.568000000000001 - type: map_at_100 value: 17.383000000000003 - type: map_at_1000 value: 17.584 - type: map_at_3 value: 12.561 - type: map_at_5 value: 14.056 - type: mrr_at_1 value: 18.958 - type: mrr_at_10 value: 28.288000000000004 - type: mrr_at_100 value: 29.432000000000002 - type: mrr_at_1000 value: 29.498 - type: mrr_at_3 value: 25.049 - type: mrr_at_5 value: 26.857 - type: ndcg_at_1 value: 18.958 - type: ndcg_at_10 value: 22.21 - type: ndcg_at_100 value: 29.596 - type: ndcg_at_1000 value: 33.583 - type: ndcg_at_3 value: 16.994999999999997 - type: ndcg_at_5 value: 18.95 - type: precision_at_1 value: 18.958 - type: precision_at_10 value: 7.192 - type: precision_at_100 value: 1.5 - type: precision_at_1000 value: 0.22399999999999998 - type: precision_at_3 value: 12.573 - type: precision_at_5 value: 10.202 - type: recall_at_1 value: 8.853 - type: recall_at_10 value: 28.087 - type: recall_at_100 value: 53.701 - type: recall_at_1000 value: 76.29899999999999 - type: recall_at_3 value: 15.913 - type: recall_at_5 value: 20.658 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.077 - type: map_at_10 value: 20.788999999999998 - type: map_at_100 value: 30.429000000000002 - type: map_at_1000 value: 32.143 - type: map_at_3 value: 14.692 - type: map_at_5 value: 17.139 - type: mrr_at_1 value: 70.75 - type: mrr_at_10 value: 78.036 - type: mrr_at_100 value: 78.401 - type: mrr_at_1000 value: 78.404 - type: mrr_at_3 value: 76.75 - type: mrr_at_5 value: 77.47500000000001 - type: ndcg_at_1 value: 58.12500000000001 - type: ndcg_at_10 value: 44.015 - type: ndcg_at_100 value: 49.247 - type: ndcg_at_1000 value: 56.211999999999996 - type: ndcg_at_3 value: 49.151 - type: ndcg_at_5 value: 46.195 - type: precision_at_1 value: 70.75 - type: precision_at_10 value: 35.5 - type: precision_at_100 value: 11.355 - type: precision_at_1000 value: 2.1950000000000003 - type: precision_at_3 value: 53.083000000000006 - type: precision_at_5 value: 44.800000000000004 - type: recall_at_1 value: 9.077 - type: recall_at_10 value: 26.259 - type: recall_at_100 value: 56.547000000000004 - type: recall_at_1000 value: 78.551 - type: recall_at_3 value: 16.162000000000003 - type: recall_at_5 value: 19.753999999999998 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 49.44500000000001 - type: f1 value: 44.67067691783401 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 68.182 - type: map_at_10 value: 78.223 - type: map_at_100 value: 78.498 - type: map_at_1000 value: 78.512 - type: map_at_3 value: 76.71 - type: map_at_5 value: 77.725 - type: mrr_at_1 value: 73.177 - type: mrr_at_10 value: 82.513 - type: mrr_at_100 value: 82.633 - type: mrr_at_1000 value: 82.635 - type: mrr_at_3 value: 81.376 - type: mrr_at_5 value: 82.182 - type: ndcg_at_1 value: 73.177 - type: ndcg_at_10 value: 82.829 - type: ndcg_at_100 value: 83.84 - type: ndcg_at_1000 value: 84.07900000000001 - type: ndcg_at_3 value: 80.303 - type: ndcg_at_5 value: 81.846 - type: precision_at_1 value: 73.177 - type: precision_at_10 value: 10.241999999999999 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 31.247999999999998 - type: precision_at_5 value: 19.697 - type: recall_at_1 value: 68.182 - type: recall_at_10 value: 92.657 - type: recall_at_100 value: 96.709 - type: recall_at_1000 value: 98.184 - type: recall_at_3 value: 85.9 - type: recall_at_5 value: 89.755 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 21.108 - type: map_at_10 value: 33.342 - type: map_at_100 value: 35.281 - type: map_at_1000 value: 35.478 - type: map_at_3 value: 29.067 - type: map_at_5 value: 31.563000000000002 - type: mrr_at_1 value: 41.667 - type: mrr_at_10 value: 49.913000000000004 - type: mrr_at_100 value: 50.724000000000004 - type: mrr_at_1000 value: 50.766 - type: mrr_at_3 value: 47.504999999999995 - type: mrr_at_5 value: 49.033 - type: ndcg_at_1 value: 41.667 - type: ndcg_at_10 value: 41.144 - type: ndcg_at_100 value: 48.326 - type: ndcg_at_1000 value: 51.486 - type: ndcg_at_3 value: 37.486999999999995 - type: ndcg_at_5 value: 38.78 - type: precision_at_1 value: 41.667 - type: precision_at_10 value: 11.358 - type: precision_at_100 value: 1.873 - type: precision_at_1000 value: 0.244 - type: precision_at_3 value: 25 - type: precision_at_5 value: 18.519 - type: recall_at_1 value: 21.108 - type: recall_at_10 value: 47.249 - type: recall_at_100 value: 74.52 - type: recall_at_1000 value: 93.31 - type: recall_at_3 value: 33.271 - type: recall_at_5 value: 39.723000000000006 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 40.317 - type: map_at_10 value: 64.861 - type: map_at_100 value: 65.697 - type: map_at_1000 value: 65.755 - type: map_at_3 value: 61.258 - type: map_at_5 value: 63.590999999999994 - type: mrr_at_1 value: 80.635 - type: mrr_at_10 value: 86.528 - type: mrr_at_100 value: 86.66199999999999 - type: mrr_at_1000 value: 86.666 - type: mrr_at_3 value: 85.744 - type: mrr_at_5 value: 86.24300000000001 - type: ndcg_at_1 value: 80.635 - type: ndcg_at_10 value: 73.13199999999999 - type: ndcg_at_100 value: 75.927 - type: ndcg_at_1000 value: 76.976 - type: ndcg_at_3 value: 68.241 - type: ndcg_at_5 value: 71.071 - type: precision_at_1 value: 80.635 - type: precision_at_10 value: 15.326 - type: precision_at_100 value: 1.7500000000000002 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 43.961 - type: precision_at_5 value: 28.599999999999998 - type: recall_at_1 value: 40.317 - type: recall_at_10 value: 76.631 - type: recall_at_100 value: 87.495 - type: recall_at_1000 value: 94.362 - type: recall_at_3 value: 65.94200000000001 - type: recall_at_5 value: 71.499 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.686 - type: ap value: 87.5577120393173 - type: f1 value: 91.6629447355139 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.702 - type: map_at_10 value: 36.414 - type: map_at_100 value: 37.561 - type: map_at_1000 value: 37.605 - type: map_at_3 value: 32.456 - type: map_at_5 value: 34.827000000000005 - type: mrr_at_1 value: 24.355 - type: mrr_at_10 value: 37.01 - type: mrr_at_100 value: 38.085 - type: mrr_at_1000 value: 38.123000000000005 - type: mrr_at_3 value: 33.117999999999995 - type: mrr_at_5 value: 35.452 - type: ndcg_at_1 value: 24.384 - type: ndcg_at_10 value: 43.456 - type: ndcg_at_100 value: 48.892 - type: ndcg_at_1000 value: 49.964 - type: ndcg_at_3 value: 35.475 - type: ndcg_at_5 value: 39.711 - type: precision_at_1 value: 24.384 - type: precision_at_10 value: 6.7940000000000005 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.052999999999999 - type: precision_at_5 value: 11.189 - type: recall_at_1 value: 23.702 - type: recall_at_10 value: 65.057 - type: recall_at_100 value: 90.021 - type: recall_at_1000 value: 98.142 - type: recall_at_3 value: 43.551 - type: recall_at_5 value: 53.738 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.62380300957591 - type: f1 value: 94.49871222100734 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.14090287277702 - type: f1 value: 60.32101258220515 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.84330867518494 - type: f1 value: 71.92248688515255 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.10692669804976 - type: f1 value: 77.9904839122866 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.822988923078444 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.38394880253403 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.82504612539082 - type: mrr value: 32.84462298174977 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.029 - type: map_at_10 value: 14.088999999999999 - type: map_at_100 value: 17.601 - type: map_at_1000 value: 19.144 - type: map_at_3 value: 10.156 - type: map_at_5 value: 11.892 - type: mrr_at_1 value: 46.44 - type: mrr_at_10 value: 56.596999999999994 - type: mrr_at_100 value: 57.11000000000001 - type: mrr_at_1000 value: 57.14 - type: mrr_at_3 value: 54.334 - type: mrr_at_5 value: 55.774 - type: ndcg_at_1 value: 44.891999999999996 - type: ndcg_at_10 value: 37.134 - type: ndcg_at_100 value: 33.652 - type: ndcg_at_1000 value: 42.548 - type: ndcg_at_3 value: 41.851 - type: ndcg_at_5 value: 39.842 - type: precision_at_1 value: 46.44 - type: precision_at_10 value: 27.647 - type: precision_at_100 value: 8.309999999999999 - type: precision_at_1000 value: 2.146 - type: precision_at_3 value: 39.422000000000004 - type: precision_at_5 value: 34.675 - type: recall_at_1 value: 6.029 - type: recall_at_10 value: 18.907 - type: recall_at_100 value: 33.76 - type: recall_at_1000 value: 65.14999999999999 - type: recall_at_3 value: 11.584999999999999 - type: recall_at_5 value: 14.626 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 39.373000000000005 - type: map_at_10 value: 55.836 - type: map_at_100 value: 56.611999999999995 - type: map_at_1000 value: 56.63 - type: map_at_3 value: 51.747 - type: map_at_5 value: 54.337999999999994 - type: mrr_at_1 value: 44.147999999999996 - type: mrr_at_10 value: 58.42699999999999 - type: mrr_at_100 value: 58.902 - type: mrr_at_1000 value: 58.914 - type: mrr_at_3 value: 55.156000000000006 - type: mrr_at_5 value: 57.291000000000004 - type: ndcg_at_1 value: 44.119 - type: ndcg_at_10 value: 63.444 - type: ndcg_at_100 value: 66.40599999999999 - type: ndcg_at_1000 value: 66.822 - type: ndcg_at_3 value: 55.962 - type: ndcg_at_5 value: 60.228 - type: precision_at_1 value: 44.119 - type: precision_at_10 value: 10.006 - type: precision_at_100 value: 1.17 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.135 - type: precision_at_5 value: 17.59 - type: recall_at_1 value: 39.373000000000005 - type: recall_at_10 value: 83.78999999999999 - type: recall_at_100 value: 96.246 - type: recall_at_1000 value: 99.324 - type: recall_at_3 value: 64.71900000000001 - type: recall_at_5 value: 74.508 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 69.199 - type: map_at_10 value: 82.892 - type: map_at_100 value: 83.578 - type: map_at_1000 value: 83.598 - type: map_at_3 value: 79.948 - type: map_at_5 value: 81.779 - type: mrr_at_1 value: 79.67 - type: mrr_at_10 value: 86.115 - type: mrr_at_100 value: 86.249 - type: mrr_at_1000 value: 86.251 - type: mrr_at_3 value: 85.08200000000001 - type: mrr_at_5 value: 85.783 - type: ndcg_at_1 value: 79.67 - type: ndcg_at_10 value: 86.839 - type: ndcg_at_100 value: 88.252 - type: ndcg_at_1000 value: 88.401 - type: ndcg_at_3 value: 83.86200000000001 - type: ndcg_at_5 value: 85.473 - type: precision_at_1 value: 79.67 - type: precision_at_10 value: 13.19 - type: precision_at_100 value: 1.521 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 36.677 - type: precision_at_5 value: 24.118000000000002 - type: recall_at_1 value: 69.199 - type: recall_at_10 value: 94.321 - type: recall_at_100 value: 99.20400000000001 - type: recall_at_1000 value: 99.947 - type: recall_at_3 value: 85.787 - type: recall_at_5 value: 90.365 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.82810046856353 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.38132611783628 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 5.127000000000001 - type: map_at_10 value: 12.235 - type: map_at_100 value: 14.417 - type: map_at_1000 value: 14.75 - type: map_at_3 value: 8.906 - type: map_at_5 value: 10.591000000000001 - type: mrr_at_1 value: 25.2 - type: mrr_at_10 value: 35.879 - type: mrr_at_100 value: 36.935 - type: mrr_at_1000 value: 36.997 - type: mrr_at_3 value: 32.783 - type: mrr_at_5 value: 34.367999999999995 - type: ndcg_at_1 value: 25.2 - type: ndcg_at_10 value: 20.509 - type: ndcg_at_100 value: 28.67 - type: ndcg_at_1000 value: 34.42 - type: ndcg_at_3 value: 19.948 - type: ndcg_at_5 value: 17.166 - type: precision_at_1 value: 25.2 - type: precision_at_10 value: 10.440000000000001 - type: precision_at_100 value: 2.214 - type: precision_at_1000 value: 0.359 - type: precision_at_3 value: 18.533 - type: precision_at_5 value: 14.860000000000001 - type: recall_at_1 value: 5.127000000000001 - type: recall_at_10 value: 21.147 - type: recall_at_100 value: 44.946999999999996 - type: recall_at_1000 value: 72.89 - type: recall_at_3 value: 11.277 - type: recall_at_5 value: 15.042 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.0373011786213 - type: cos_sim_spearman value: 79.27889560856613 - type: euclidean_pearson value: 80.31186315495655 - type: euclidean_spearman value: 79.41630415280811 - type: manhattan_pearson value: 80.31755140442013 - type: manhattan_spearman value: 79.43069870027611 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.8659751342045 - type: cos_sim_spearman value: 76.95377612997667 - type: euclidean_pearson value: 81.24552945497848 - type: euclidean_spearman value: 77.18236963555253 - type: manhattan_pearson value: 81.26477607759037 - type: manhattan_spearman value: 77.13821753062756 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.34597139044875 - type: cos_sim_spearman value: 84.124169425592 - type: euclidean_pearson value: 83.68590721511401 - type: euclidean_spearman value: 84.18846190846398 - type: manhattan_pearson value: 83.57630235061498 - type: manhattan_spearman value: 84.10244043726902 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.67641885599572 - type: cos_sim_spearman value: 80.46450725650428 - type: euclidean_pearson value: 81.61645042715865 - type: euclidean_spearman value: 80.61418394236874 - type: manhattan_pearson value: 81.55712034928871 - type: manhattan_spearman value: 80.57905670523951 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.86650310886782 - type: cos_sim_spearman value: 89.76081629222328 - type: euclidean_pearson value: 89.1530747029954 - type: euclidean_spearman value: 89.80990657280248 - type: manhattan_pearson value: 89.10640563278132 - type: manhattan_spearman value: 89.76282108434047 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.93864027911118 - type: cos_sim_spearman value: 85.47096193999023 - type: euclidean_pearson value: 85.03141840870533 - type: euclidean_spearman value: 85.43124029598181 - type: manhattan_pearson value: 84.99002664393512 - type: manhattan_spearman value: 85.39169195120834 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.7045343749832 - type: cos_sim_spearman value: 89.03262221146677 - type: euclidean_pearson value: 89.56078218264365 - type: euclidean_spearman value: 89.17827006466868 - type: manhattan_pearson value: 89.52717595468582 - type: manhattan_spearman value: 89.15878115952923 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.20191302875551 - type: cos_sim_spearman value: 64.11446552557646 - type: euclidean_pearson value: 64.6918197393619 - type: euclidean_spearman value: 63.440182631197764 - type: manhattan_pearson value: 64.55692904121835 - type: manhattan_spearman value: 63.424877742756266 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.37793104662344 - type: cos_sim_spearman value: 87.7357802629067 - type: euclidean_pearson value: 87.4286301545109 - type: euclidean_spearman value: 87.78452920777421 - type: manhattan_pearson value: 87.42445169331255 - type: manhattan_spearman value: 87.78537677249598 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.31465405081792 - type: mrr value: 95.7173781193389 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.760999999999996 - type: map_at_10 value: 67.904 - type: map_at_100 value: 68.539 - type: map_at_1000 value: 68.562 - type: map_at_3 value: 65.415 - type: map_at_5 value: 66.788 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 68.797 - type: mrr_at_100 value: 69.236 - type: mrr_at_1000 value: 69.257 - type: mrr_at_3 value: 66.667 - type: mrr_at_5 value: 67.967 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 72.24199999999999 - type: ndcg_at_100 value: 74.86 - type: ndcg_at_1000 value: 75.354 - type: ndcg_at_3 value: 67.93400000000001 - type: ndcg_at_5 value: 70.02199999999999 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.533 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.778000000000002 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 57.760999999999996 - type: recall_at_10 value: 84.383 - type: recall_at_100 value: 96.267 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 72.628 - type: recall_at_5 value: 78.094 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8029702970297 - type: cos_sim_ap value: 94.9210324173411 - type: cos_sim_f1 value: 89.8521162672106 - type: cos_sim_precision value: 91.67533818938605 - type: cos_sim_recall value: 88.1 - type: dot_accuracy value: 99.69504950495049 - type: dot_ap value: 90.4919719146181 - type: dot_f1 value: 84.72289156626506 - type: dot_precision value: 81.76744186046511 - type: dot_recall value: 87.9 - type: euclidean_accuracy value: 99.79702970297029 - type: euclidean_ap value: 94.87827463795753 - type: euclidean_f1 value: 89.55680081507896 - type: euclidean_precision value: 91.27725856697819 - type: euclidean_recall value: 87.9 - type: manhattan_accuracy value: 99.7990099009901 - type: manhattan_ap value: 94.87587025149682 - type: manhattan_f1 value: 89.76298537569339 - type: manhattan_precision value: 90.53916581892166 - type: manhattan_recall value: 89 - type: max_accuracy value: 99.8029702970297 - type: max_ap value: 94.9210324173411 - type: max_f1 value: 89.8521162672106 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.92385753948724 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.671756975431144 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.677928036739004 - type: mrr value: 51.56413133435193 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.523589340819683 - type: cos_sim_spearman value: 30.187407518823235 - type: dot_pearson value: 29.039713969699015 - type: dot_spearman value: 29.114740651155508 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.211 - type: map_at_10 value: 1.6199999999999999 - type: map_at_100 value: 8.658000000000001 - type: map_at_1000 value: 21.538 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.919 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.18599999999999 - type: mrr_at_100 value: 86.18599999999999 - type: mrr_at_1000 value: 86.18599999999999 - type: mrr_at_3 value: 85 - type: mrr_at_5 value: 85.9 - type: ndcg_at_1 value: 74 - type: ndcg_at_10 value: 66.542 - type: ndcg_at_100 value: 50.163999999999994 - type: ndcg_at_1000 value: 45.696999999999996 - type: ndcg_at_3 value: 71.531 - type: ndcg_at_5 value: 70.45 - type: precision_at_1 value: 78 - type: precision_at_10 value: 69.39999999999999 - type: precision_at_100 value: 51.06 - type: precision_at_1000 value: 20.022000000000002 - type: precision_at_3 value: 76 - type: precision_at_5 value: 74.8 - type: recall_at_1 value: 0.211 - type: recall_at_10 value: 1.813 - type: recall_at_100 value: 12.098 - type: recall_at_1000 value: 42.618 - type: recall_at_3 value: 0.603 - type: recall_at_5 value: 0.987 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.2079999999999997 - type: map_at_10 value: 7.777000000000001 - type: map_at_100 value: 12.825000000000001 - type: map_at_1000 value: 14.196 - type: map_at_3 value: 4.285 - type: map_at_5 value: 6.177 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 42.635 - type: mrr_at_100 value: 43.955 - type: mrr_at_1000 value: 43.955 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 41.088 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 20.666999999999998 - type: ndcg_at_100 value: 31.840000000000003 - type: ndcg_at_1000 value: 43.191 - type: ndcg_at_3 value: 23.45 - type: ndcg_at_5 value: 22.994 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 17.959 - type: precision_at_100 value: 6.755 - type: precision_at_1000 value: 1.4200000000000002 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 23.673 - type: recall_at_1 value: 2.2079999999999997 - type: recall_at_10 value: 13.144 - type: recall_at_100 value: 42.491 - type: recall_at_1000 value: 77.04299999999999 - type: recall_at_3 value: 5.3469999999999995 - type: recall_at_5 value: 9.139 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.9044 - type: ap value: 14.625783489340755 - type: f1 value: 54.814936562590546 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.94227504244483 - type: f1 value: 61.22516038508854 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.602409155145864 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.94641473445789 - type: cos_sim_ap value: 76.91572747061197 - type: cos_sim_f1 value: 70.14348097317529 - type: cos_sim_precision value: 66.53254437869822 - type: cos_sim_recall value: 74.1688654353562 - type: dot_accuracy value: 84.80061989628658 - type: dot_ap value: 70.7952548895177 - type: dot_f1 value: 65.44780728844965 - type: dot_precision value: 61.53310104529617 - type: dot_recall value: 69.89445910290237 - type: euclidean_accuracy value: 86.94641473445789 - type: euclidean_ap value: 76.80774009393652 - type: euclidean_f1 value: 70.30522503879979 - type: euclidean_precision value: 68.94977168949772 - type: euclidean_recall value: 71.71503957783642 - type: manhattan_accuracy value: 86.8629671574179 - type: manhattan_ap value: 76.76518632600317 - type: manhattan_f1 value: 70.16056518946692 - type: manhattan_precision value: 68.360450563204 - type: manhattan_recall value: 72.0580474934037 - type: max_accuracy value: 86.94641473445789 - type: max_ap value: 76.91572747061197 - type: max_f1 value: 70.30522503879979 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.10428066907285 - type: cos_sim_ap value: 86.25114759921435 - type: cos_sim_f1 value: 78.37857884586856 - type: cos_sim_precision value: 75.60818546078993 - type: cos_sim_recall value: 81.35971666153372 - type: dot_accuracy value: 87.41995575736406 - type: dot_ap value: 81.51838010086782 - type: dot_f1 value: 74.77398015435503 - type: dot_precision value: 71.53002390662354 - type: dot_recall value: 78.32614721281182 - type: euclidean_accuracy value: 89.12368533395428 - type: euclidean_ap value: 86.33456799874504 - type: euclidean_f1 value: 78.45496750232127 - type: euclidean_precision value: 75.78388462366364 - type: euclidean_recall value: 81.32121958731136 - type: manhattan_accuracy value: 89.10622113556099 - type: manhattan_ap value: 86.31215061745333 - type: manhattan_f1 value: 78.40684906011539 - type: manhattan_precision value: 75.89536643366722 - type: manhattan_recall value: 81.09023714197721 - type: max_accuracy value: 89.12368533395428 - type: max_ap value: 86.33456799874504 - type: max_f1 value: 78.45496750232127 --- # Pekarnick/e5-large-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`intfloat/e5-large-v2`](https://huggingface.co/intfloat/e5-large-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/intfloat/e5-large-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Pekarnick/e5-large-v2-Q4_K_M-GGUF --hf-file e5-large-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Pekarnick/e5-large-v2-Q4_K_M-GGUF --hf-file e5-large-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Pekarnick/e5-large-v2-Q4_K_M-GGUF --hf-file e5-large-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Pekarnick/e5-large-v2-Q4_K_M-GGUF --hf-file e5-large-v2-q4_k_m.gguf -c 2048 ```