Amitz244 commited on
Commit
25dd93a
·
verified ·
1 Parent(s): 263b9f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -64,11 +64,12 @@ image = Image.open("image_path.jpg").convert("RGB")
64
 
65
  # Preprocess and predict
66
  def IQA_preprocess():
 
67
  transform = transforms.Compose([
68
- transforms.Resize(224),
69
- transforms.CenterCrop(size=(224, 224)),
70
- transforms.ToTensor(),
71
- transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
72
  std=(0.26862954, 0.26130258, 0.27577711))
73
  ])
74
  return transform
@@ -78,4 +79,13 @@ image = IQA_preprocess()(image).unsqueeze(0).to(device)
78
  with torch.no_grad():
79
  iqa_score = model(image).item()
80
 
 
 
 
 
 
 
 
 
 
81
  print(f"Predicted quality Score: {iqa_score:.4f}")
 
64
 
65
  # Preprocess and predict
66
  def IQA_preprocess():
67
+ random.seed(3407)
68
  transform = transforms.Compose([
69
+ transforms.Resize((512,384)),
70
+ transforms.RandomCrop(size=(224,224)),
71
+ transforms.ToTensor(),
72
+ transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
73
  std=(0.26862954, 0.26130258, 0.27577711))
74
  ])
75
  return transform
 
79
  with torch.no_grad():
80
  iqa_score = model(image).item()
81
 
82
+ # maps the predicted score from the model's range [min_pred, max_pred]
83
+ # to the actual range [min_score, max_score] using min-max scaling.
84
+
85
+ min_pred =
86
+ max_pred =
87
+ max_score =
88
+ min_score =
89
+
90
+ normalized_score = ((iqa_score - min_pred) / (max_pred - min_pred)) * (max_score - min_score) + min_score
91
  print(f"Predicted quality Score: {iqa_score:.4f}")