Amitz244 commited on
Commit
ff970cc
·
verified ·
1 Parent(s): 24ddbd1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -77,17 +77,17 @@ def IQA_preprocess():
77
  batch = torch.stack([IQA_preprocess()(image) for _ in range(15)]).to(device) # Shape: (15, 3, 224, 224)
78
 
79
  with torch.no_grad():
80
- iqa_score = model(batch).cpu().numpy()
81
 
82
  iqa_score = np.mean(scores)
83
 
84
  # maps the predicted score from the model's range [min_pred, max_pred]
85
  # to the actual range [min_score, max_score] using min-max scaling.
86
 
87
- min_pred =
88
- max_pred =
89
- max_score =
90
- min_score =
91
 
92
  normalized_score = ((iqa_score - min_pred) / (max_pred - min_pred)) * (max_score - min_score) + min_score
93
  print(f"Predicted quality Score: {normalized_score:.4f}")
 
77
  batch = torch.stack([IQA_preprocess()(image) for _ in range(15)]).to(device) # Shape: (15, 3, 224, 224)
78
 
79
  with torch.no_grad():
80
+ scores = model(batch).cpu().numpy()
81
 
82
  iqa_score = np.mean(scores)
83
 
84
  # maps the predicted score from the model's range [min_pred, max_pred]
85
  # to the actual range [min_score, max_score] using min-max scaling.
86
 
87
+ min_pred = -6.52
88
+ max_pred = 3.11
89
+ max_score = 4.32
90
+ min_score = 1
91
 
92
  normalized_score = ((iqa_score - min_pred) / (max_pred - min_pred)) * (max_score - min_score) + min_score
93
  print(f"Predicted quality Score: {normalized_score:.4f}")