File size: 38,133 Bytes
8f5593f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
from typing import Any, Dict, Optional

import torch
from transformers import AutoModel, PreTrainedModel
from transformers.activations import ClippedGELUActivation, GELUActivation
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PoolerEndLogits

from .configuration_relik import RelikReaderConfig


class RelikReaderSample:
    def __init__(self, **kwargs):
        super().__setattr__("_d", {})
        self._d = kwargs

    def __getattribute__(self, item):
        return super(RelikReaderSample, self).__getattribute__(item)

    def __getattr__(self, item):
        if item.startswith("__") and item.endswith("__"):
            # this is likely some python library-specific variable (such as __deepcopy__ for copy)
            # better follow standard behavior here
            raise AttributeError(item)
        elif item in self._d:
            return self._d[item]
        else:
            return None

    def __setattr__(self, key, value):
        if key in self._d:
            self._d[key] = value
        else:
            super().__setattr__(key, value)
            self._d[key] = value


activation2functions = {
    "relu": torch.nn.ReLU(),
    "gelu": GELUActivation(),
    "gelu_10": ClippedGELUActivation(-10, 10),
}


class PoolerEndLogitsBi(PoolerEndLogits):
    def __init__(self, config: PretrainedConfig):
        super().__init__(config)
        self.dense_1 = torch.nn.Linear(config.hidden_size, 2)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        if p_mask is not None:
            p_mask = p_mask.unsqueeze(-1)
        logits = super().forward(
            hidden_states,
            start_states,
            start_positions,
            p_mask,
        )
        return logits


class RelikReaderSpanModel(PreTrainedModel):
    config_class = RelikReaderConfig

    def __init__(self, config: RelikReaderConfig, *args, **kwargs):
        super().__init__(config)
        # Transformer model declaration
        self.config = config
        self.transformer_model = (
            AutoModel.from_pretrained(self.config.transformer_model)
            if self.config.num_layers is None
            else AutoModel.from_pretrained(
                self.config.transformer_model, num_hidden_layers=self.config.num_layers
            )
        )
        self.transformer_model.resize_token_embeddings(
            self.transformer_model.config.vocab_size
            + self.config.additional_special_symbols
        )

        self.activation = self.config.activation
        self.linears_hidden_size = self.config.linears_hidden_size
        self.use_last_k_layers = self.config.use_last_k_layers

        # named entity detection layers
        self.ned_start_classifier = self._get_projection_layer(
            self.activation, last_hidden=2, layer_norm=False
        )
        self.ned_end_classifier = PoolerEndLogits(self.transformer_model.config)

        # END entity disambiguation layer
        self.ed_start_projector = self._get_projection_layer(self.activation)
        self.ed_end_projector = self._get_projection_layer(self.activation)

        self.training = self.config.training

        # criterion
        self.criterion = torch.nn.CrossEntropyLoss()

    def _get_projection_layer(
        self,
        activation: str,
        last_hidden: Optional[int] = None,
        input_hidden=None,
        layer_norm: bool = True,
    ) -> torch.nn.Sequential:
        head_components = [
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                (
                    self.transformer_model.config.hidden_size * self.use_last_k_layers
                    if input_hidden is None
                    else input_hidden
                ),
                self.linears_hidden_size,
            ),
            activation2functions[activation],
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                self.linears_hidden_size,
                self.linears_hidden_size if last_hidden is None else last_hidden,
            ),
        ]

        if layer_norm:
            head_components.append(
                torch.nn.LayerNorm(
                    self.linears_hidden_size if last_hidden is None else last_hidden,
                    self.transformer_model.config.layer_norm_eps,
                )
            )

        return torch.nn.Sequential(*head_components)

    def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        mask = mask.unsqueeze(-1)
        if next(self.parameters()).dtype == torch.float16:
            logits = logits * (1 - mask) - 65500 * mask
        else:
            logits = logits * (1 - mask) - 1e30 * mask
        return logits

    def _get_model_features(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor],
    ):
        model_input = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "output_hidden_states": self.use_last_k_layers > 1,
        }

        if token_type_ids is not None:
            model_input["token_type_ids"] = token_type_ids

        model_output = self.transformer_model(**model_input)

        if self.use_last_k_layers > 1:
            model_features = torch.cat(
                model_output[1][-self.use_last_k_layers :], dim=-1
            )
        else:
            model_features = model_output[0]

        return model_features

    def compute_ned_end_logits(
        self,
        start_predictions,
        start_labels,
        model_features,
        prediction_mask,
        batch_size,
    ) -> Optional[torch.Tensor]:
        # todo: maybe when constraining on the spans,
        #  we should not use a prediction_mask for the end tokens.
        #  at least we should not during training imo
        start_positions = start_labels if self.training else start_predictions
        start_positions_indices = (
            torch.arange(start_positions.size(1), device=start_positions.device)
            .unsqueeze(0)
            .expand(batch_size, -1)[start_positions > 0]
        ).to(start_positions.device)

        if len(start_positions_indices) > 0:
            expanded_features = model_features.repeat_interleave(
                torch.sum(start_positions > 0, dim=-1), dim=0
            )
            expanded_prediction_mask = prediction_mask.repeat_interleave(
                torch.sum(start_positions > 0, dim=-1), dim=0
            )
            end_logits = self.ned_end_classifier(
                hidden_states=expanded_features,
                start_positions=start_positions_indices,
                p_mask=expanded_prediction_mask,
            )

            return end_logits

        return None

    def compute_classification_logits(
        self,
        model_features,
        special_symbols_mask,
        prediction_mask,
        batch_size,
        start_positions=None,
        end_positions=None,
    ) -> torch.Tensor:
        if start_positions is None or end_positions is None:
            start_positions = torch.zeros_like(prediction_mask)
            end_positions = torch.zeros_like(prediction_mask)

        model_start_features = self.ed_start_projector(model_features)
        model_end_features = self.ed_end_projector(model_features)
        model_end_features[start_positions > 0] = model_end_features[end_positions > 0]

        model_ed_features = torch.cat(
            [model_start_features, model_end_features], dim=-1
        )

        # computing ed features
        classes_representations = torch.sum(special_symbols_mask, dim=1)[0].item()
        special_symbols_representation = model_ed_features[special_symbols_mask].view(
            batch_size, classes_representations, -1
        )

        logits = torch.bmm(
            model_ed_features,
            torch.permute(special_symbols_representation, (0, 2, 1)),
        )

        logits = self._mask_logits(logits, prediction_mask)

        return logits

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor] = None,
        prediction_mask: Optional[torch.Tensor] = None,
        special_symbols_mask: Optional[torch.Tensor] = None,
        start_labels: Optional[torch.Tensor] = None,
        end_labels: Optional[torch.Tensor] = None,
        use_predefined_spans: bool = False,
        *args,
        **kwargs,
    ) -> Dict[str, Any]:
        batch_size, seq_len = input_ids.shape

        model_features = self._get_model_features(
            input_ids, attention_mask, token_type_ids
        )

        ned_start_labels = None

        # named entity detection if required
        if use_predefined_spans:  # no need to compute spans
            ned_start_logits, ned_start_probabilities, ned_start_predictions = (
                None,
                None,
                (
                    torch.clone(start_labels)
                    if start_labels is not None
                    else torch.zeros_like(input_ids)
                ),
            )
            ned_end_logits, ned_end_probabilities, ned_end_predictions = (
                None,
                None,
                (
                    torch.clone(end_labels)
                    if end_labels is not None
                    else torch.zeros_like(input_ids)
                ),
            )

            ned_start_predictions[ned_start_predictions > 0] = 1
            ned_end_predictions[ned_end_predictions > 0] = 1

        else:  # compute spans
            # start boundary prediction
            ned_start_logits = self.ned_start_classifier(model_features)
            ned_start_logits = self._mask_logits(ned_start_logits, prediction_mask)
            ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
            ned_start_predictions = ned_start_probabilities.argmax(dim=-1)

            # end boundary prediction
            ned_start_labels = (
                torch.zeros_like(start_labels) if start_labels is not None else None
            )

            if ned_start_labels is not None:
                ned_start_labels[start_labels == -100] = -100
                ned_start_labels[start_labels > 0] = 1

            ned_end_logits = self.compute_ned_end_logits(
                ned_start_predictions,
                ned_start_labels,
                model_features,
                prediction_mask,
                batch_size,
            )

            if ned_end_logits is not None:
                ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
                ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1)
            else:
                ned_end_logits, ned_end_probabilities = None, None
                ned_end_predictions = ned_start_predictions.new_zeros(batch_size)

            # flattening end predictions
            #   (flattening can happen only if the
            #   end boundaries were not predicted using the gold labels)
            if not self.training and ned_end_logits is not None:
                flattened_end_predictions = torch.zeros_like(ned_start_predictions)

                row_indices, start_positions = torch.where(ned_start_predictions > 0)
                ned_end_predictions[ned_end_predictions<start_positions] = start_positions[ned_end_predictions<start_positions]

                end_spans_repeated = (row_indices + 1)* seq_len + ned_end_predictions
                cummax_values, _ = end_spans_repeated.cummax(dim=0)

                end_spans_repeated = (end_spans_repeated > torch.cat((end_spans_repeated[:1], cummax_values[:-1])))
                end_spans_repeated[0] = True

                ned_start_predictions[row_indices[~end_spans_repeated], start_positions[~end_spans_repeated]] = 0

                row_indices, start_positions, ned_end_predictions = row_indices[end_spans_repeated], start_positions[end_spans_repeated], ned_end_predictions[end_spans_repeated]

                flattened_end_predictions[row_indices, ned_end_predictions] = 1

                total_start_predictions, total_end_predictions = ned_start_predictions.sum(), flattened_end_predictions.sum()

                assert (
                    total_start_predictions == 0
                    or total_start_predictions == total_end_predictions
                ), (
                    f"Total number of start predictions = {total_start_predictions}. "
                    f"Total number of end predictions = {total_end_predictions}"
                )
                ned_end_predictions = flattened_end_predictions
            else:
                ned_end_predictions = torch.zeros_like(ned_start_predictions)

        start_position, end_position = (
            (start_labels, end_labels)
            if self.training
            else (ned_start_predictions, ned_end_predictions)
        )

        # Entity disambiguation
        ed_logits = self.compute_classification_logits(
            model_features,
            special_symbols_mask,
            prediction_mask,
            batch_size,
            start_position,
            end_position,
        )
        ed_probabilities = torch.softmax(ed_logits, dim=-1)
        ed_predictions = torch.argmax(ed_probabilities, dim=-1)

        # output build
        output_dict = dict(
            batch_size=batch_size,
            ned_start_logits=ned_start_logits,
            ned_start_probabilities=ned_start_probabilities,
            ned_start_predictions=ned_start_predictions,
            ned_end_logits=ned_end_logits,
            ned_end_probabilities=ned_end_probabilities,
            ned_end_predictions=ned_end_predictions,
            ed_logits=ed_logits,
            ed_probabilities=ed_probabilities,
            ed_predictions=ed_predictions,
        )

        # compute loss if labels
        if start_labels is not None and end_labels is not None and self.training:
            # named entity detection loss

            # start
            if ned_start_logits is not None:
                ned_start_loss = self.criterion(
                    ned_start_logits.view(-1, ned_start_logits.shape[-1]),
                    ned_start_labels.view(-1),
                )
            else:
                ned_start_loss = 0

            # end
            if ned_end_logits is not None:
                ned_end_labels = torch.zeros_like(end_labels)
                ned_end_labels[end_labels == -100] = -100
                ned_end_labels[end_labels > 0] = 1

                ned_end_loss = self.criterion(
                    ned_end_logits,
                    (
                        torch.arange(
                            ned_end_labels.size(1), device=ned_end_labels.device
                        )
                        .unsqueeze(0)
                        .expand(batch_size, -1)[ned_end_labels > 0]
                    ).to(ned_end_labels.device),
                )

            else:
                ned_end_loss = 0

            # entity disambiguation loss
            start_labels[ned_start_labels != 1] = -100
            ed_labels = torch.clone(start_labels)
            ed_labels[end_labels > 0] = end_labels[end_labels > 0]
            ed_loss = self.criterion(
                ed_logits.view(-1, ed_logits.shape[-1]),
                ed_labels.view(-1),
            )

            output_dict["ned_start_loss"] = ned_start_loss
            output_dict["ned_end_loss"] = ned_end_loss
            output_dict["ed_loss"] = ed_loss

            output_dict["loss"] = ned_start_loss + ned_end_loss + ed_loss

        return output_dict


class RelikReaderREModel(PreTrainedModel):
    config_class = RelikReaderConfig

    def __init__(self, config, *args, **kwargs):
        super().__init__(config)
        # Transformer model declaration
        # self.transformer_model_name = transformer_model
        self.config = config
        self.transformer_model = (
            AutoModel.from_pretrained(config.transformer_model)
            if config.num_layers is None
            else AutoModel.from_pretrained(
                config.transformer_model, num_hidden_layers=config.num_layers
            )
        )
        self.transformer_model.resize_token_embeddings(
            self.transformer_model.config.vocab_size
            + config.additional_special_symbols
            + config.additional_special_symbols_types,
        )

        # named entity detection layers
        self.ned_start_classifier = self._get_projection_layer(
            config.activation, last_hidden=2, layer_norm=False
        )

        self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)

        self.relation_disambiguation_loss = (
            config.relation_disambiguation_loss
            if hasattr(config, "relation_disambiguation_loss")
            else False
        )

        if self.config.entity_type_loss and self.config.add_entity_embedding:
            input_hidden_ents = 3 * self.config.linears_hidden_size
        else:
            input_hidden_ents = 2 * self.config.linears_hidden_size

        self.re_projector = self._get_projection_layer(
            config.activation, input_hidden=2*self.transformer_model.config.hidden_size, hidden=input_hidden_ents, last_hidden=2*self.config.linears_hidden_size
        )

        self.re_relation_projector = self._get_projection_layer(
            config.activation, input_hidden=self.transformer_model.config.hidden_size,
        )

        if self.config.entity_type_loss or self.relation_disambiguation_loss:
            self.re_entities_projector = self._get_projection_layer(
                config.activation,
                input_hidden=2 * self.transformer_model.config.hidden_size,
            )
            self.re_definition_projector = self._get_projection_layer(
                config.activation,
            )

        self.re_classifier = self._get_projection_layer(
            config.activation,
            input_hidden=config.linears_hidden_size,
            last_hidden=2,
            layer_norm=False,
        )

        self.training = config.training

        # criterion
        self.criterion = torch.nn.CrossEntropyLoss()
        self.criterion_type = torch.nn.BCEWithLogitsLoss()

    def _get_projection_layer(
        self,
        activation: str,
        last_hidden: Optional[int] = None,
        hidden: Optional[int] = None,
        input_hidden=None,
        layer_norm: bool = True,
    ) -> torch.nn.Sequential:
        head_components = [
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                (
                    self.transformer_model.config.hidden_size
                    * self.config.use_last_k_layers
                    if input_hidden is None
                    else input_hidden
                ),
                self.config.linears_hidden_size if hidden is None else hidden,
            ),
            activation2functions[activation],
            torch.nn.Dropout(0.1),
            torch.nn.Linear(
                self.config.linears_hidden_size if hidden is None else hidden,
                self.config.linears_hidden_size if last_hidden is None else last_hidden,
            ),
        ]

        if layer_norm:
            head_components.append(
                torch.nn.LayerNorm(
                    (
                        self.config.linears_hidden_size
                        if last_hidden is None
                        else last_hidden
                    ),
                    self.transformer_model.config.layer_norm_eps,
                )
            )

        return torch.nn.Sequential(*head_components)

    def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        mask = mask.unsqueeze(-1)
        if next(self.parameters()).dtype == torch.float16:
            logits = logits * (1 - mask) - 65500 * mask
        else:
            logits = logits * (1 - mask) - 1e30 * mask
        return logits

    def _get_model_features(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: Optional[torch.Tensor],
    ):
        model_input = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "output_hidden_states": self.config.use_last_k_layers > 1,
        }

        if token_type_ids is not None:
            model_input["token_type_ids"] = token_type_ids

        model_output = self.transformer_model(**model_input)

        if self.config.use_last_k_layers > 1:
            model_features = torch.cat(
                model_output[1][-self.config.use_last_k_layers :], dim=-1
            )
        else:
            model_features = model_output[0]

        return model_features

    def compute_ned_end_logits(
        self,
        start_predictions,
        start_labels,
        model_features,
        prediction_mask,
        batch_size,
        mask_preceding: bool = False,
    ) -> Optional[torch.Tensor]:
        # todo: maybe when constraining on the spans,
        #  we should not use a prediction_mask for the end tokens.
        #  at least we should not during training imo
        start_positions = start_labels if self.training else start_predictions
        start_positions_indices = (
            torch.arange(start_positions.size(1), device=start_positions.device)
            .unsqueeze(0)
            .expand(batch_size, -1)[start_positions > 0]
        ).to(start_positions.device)

        if len(start_positions_indices) > 0:
            expanded_features = model_features.repeat_interleave(
                torch.sum(start_positions > 0, dim=-1), dim=0
            )
            expanded_prediction_mask = prediction_mask.repeat_interleave(
                torch.sum(start_positions > 0, dim=-1), dim=0
            )
            if mask_preceding:
                expanded_prediction_mask[
                    torch.arange(
                        expanded_prediction_mask.shape[1],
                        device=expanded_prediction_mask.device,
                    )
                    < start_positions_indices.unsqueeze(1)
                ] = 1
            end_logits = self.ned_end_classifier(
                hidden_states=expanded_features,
                start_positions=start_positions_indices,
                p_mask=expanded_prediction_mask,
            )

            return end_logits

        return None

    def compute_relation_logits(
        self,
        model_entity_features,
        special_symbols_features,
    ) -> torch.Tensor:
        model_subject_object_features = self.re_projector(model_entity_features)
        model_subject_features = model_subject_object_features[
            :, :, : model_subject_object_features.shape[-1] // 2
        ]
        model_object_features = model_subject_object_features[
            :, :, model_subject_object_features.shape[-1] // 2 :
        ]
        special_symbols_start_representation = self.re_relation_projector(
            special_symbols_features
        )
        re_logits = torch.einsum(
            "bse,bde,bfe->bsdfe",
            model_subject_features,
            model_object_features,
            special_symbols_start_representation,
        )
        re_logits = self.re_classifier(re_logits)

        return re_logits

    def compute_entity_logits(
        self,
        model_entity_features,
        special_symbols_features,
    ) -> torch.Tensor:
        model_ed_features = self.re_entities_projector(model_entity_features)
        special_symbols_ed_representation = self.re_definition_projector(
            special_symbols_features
        )

        logits = torch.bmm(
            model_ed_features,
            torch.permute(special_symbols_ed_representation, (0, 2, 1)),
        )
        logits = self._mask_logits(
            logits, (model_entity_features == -100).all(2).long()
        )
        return logits

    def compute_loss(self, logits, labels, mask=None):
        logits = logits.reshape(-1, logits.shape[-1])
        labels = labels.reshape(-1).long()
        if mask is not None:
            return self.criterion(logits[mask], labels[mask])
        return self.criterion(logits, labels)

    def compute_ned_type_loss(
        self,
        disambiguation_labels,
        re_ned_entities_logits,
        ned_type_logits,
        re_entities_logits,
        entity_types,
        mask,
    ):
        if self.config.entity_type_loss and self.relation_disambiguation_loss:
            return self.criterion_type(
                re_ned_entities_logits[disambiguation_labels != -100],
                disambiguation_labels[disambiguation_labels != -100],
            )
        if self.config.entity_type_loss:
            return self.criterion_type(
                ned_type_logits[mask],
                disambiguation_labels[:, :, :entity_types][mask],
            )

        if self.relation_disambiguation_loss:
            return self.criterion_type(
                re_entities_logits[disambiguation_labels != -100],
                disambiguation_labels[disambiguation_labels != -100],
            )
        return 0

    def compute_relation_loss(self, relation_labels, re_logits):
        return self.compute_loss(
            re_logits, relation_labels, relation_labels.view(-1) != -100
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor,
        prediction_mask: Optional[torch.Tensor] = None,
        special_symbols_mask: Optional[torch.Tensor] = None,
        special_symbols_mask_entities: Optional[torch.Tensor] = None,
        start_labels: Optional[torch.Tensor] = None,
        end_labels: Optional[torch.Tensor] = None,
        disambiguation_labels: Optional[torch.Tensor] = None,
        relation_labels: Optional[torch.Tensor] = None,
        relation_threshold: float = None,
        is_validation: bool = False,
        is_prediction: bool = False,
        use_predefined_spans: bool = False,
        *args,
        **kwargs,
    ) -> Dict[str, Any]:

        relation_threshold = self.config.threshold if relation_threshold is None else relation_threshold

        batch_size = input_ids.shape[0]

        model_features = self._get_model_features(
            input_ids, attention_mask, token_type_ids
        )

        # named entity detection
        if use_predefined_spans:
            ned_start_logits, ned_start_probabilities, ned_start_predictions = (
                None,
                None,
                torch.zeros_like(start_labels),
            )
            ned_end_logits, ned_end_probabilities, ned_end_predictions = (
                None,
                None,
                torch.zeros_like(end_labels),
            )

            ned_start_predictions[start_labels > 0] = 1
            ned_end_predictions[end_labels > 0] = 1
            ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
            ned_start_labels = start_labels
            ned_start_labels[start_labels > 0] = 1
        else:
            # start boundary prediction
            ned_start_logits = self.ned_start_classifier(model_features)
            if is_validation or is_prediction:
                ned_start_logits = self._mask_logits(
                    ned_start_logits, prediction_mask
                )  # why?
            ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
            ned_start_predictions = ned_start_probabilities.argmax(dim=-1)

            # end boundary prediction
            ned_start_labels = (
                torch.zeros_like(start_labels) if start_labels is not None else None
            )

            # start_labels contain entity id at their position, we just need 1 for start of entity
            if ned_start_labels is not None:
                ned_start_labels[start_labels == -100] = -100
                ned_start_labels[start_labels > 0] = 1

            # compute end logits only if there are any start predictions.
            # For each start prediction, n end predictions are made
            ned_end_logits = self.compute_ned_end_logits(
                ned_start_predictions,
                ned_start_labels,
                model_features,
                prediction_mask,
                batch_size,
                True,
            )

            if ned_end_logits is not None:
                # For each start prediction, n end predictions are made based on
                # binary classification ie. argmax at each position.
                ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
                ned_end_predictions = ned_end_probabilities.argmax(dim=-1)
            else:
                ned_end_logits, ned_end_probabilities = None, None
                ned_end_predictions = torch.zeros_like(ned_start_predictions)

            if is_prediction or is_validation:
                end_preds_count = ned_end_predictions.sum(1)
                # If there are no end predictions for a start prediction, remove the start prediction
                if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
                    ned_start_predictions[ned_start_predictions == 1] = (
                        end_preds_count != 0
                    ).long()
                    ned_end_predictions = ned_end_predictions[end_preds_count != 0]

        if end_labels is not None:
            end_labels = end_labels[~(end_labels == -100).all(2)]

        start_position, end_position = (
            (start_labels, end_labels)
            if (not is_prediction and not is_validation)
            else (ned_start_predictions, ned_end_predictions)
        )

        start_counts = (start_position > 0).sum(1)
        if (start_counts > 0).any():
            ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
        # limit to 30 predictions per document using start_counts, by setting all po after sum is 30 to 0
        # if is_validation or is_prediction:
        #     ned_start_predictions[ned_start_predictions == 1] = start_counts
        # We can only predict relations if we have start and end predictions
        if (end_position > 0).sum() > 0:
            ends_count = (end_position > 0).sum(1)
            model_subject_features = torch.cat(
                [
                    torch.repeat_interleave(
                        model_features[start_position > 0], ends_count, dim=0
                    ),  # start position features
                    torch.repeat_interleave(model_features, start_counts, dim=0)[
                        end_position > 0
                    ],  # end position features
                ],
                dim=-1,
            )
            ents_count = torch.nn.utils.rnn.pad_sequence(
                torch.split(ends_count, start_counts.tolist()),
                batch_first=True,
                padding_value=0,
            ).sum(1)
            model_subject_features = torch.nn.utils.rnn.pad_sequence(
                torch.split(model_subject_features, ents_count.tolist()),
                batch_first=True,
                padding_value=-100,
            )

            # if is_validation or is_prediction:
            #     model_subject_features = model_subject_features[:, :30, :]

            # entity disambiguation. Here relation_disambiguation_loss would only be useful to
            # reduce the number of candidate relations for the next step, but currently unused.
            if self.config.entity_type_loss or self.relation_disambiguation_loss:
                (re_ned_entities_logits) = self.compute_entity_logits(
                    model_subject_features,
                    model_features[
                        special_symbols_mask | special_symbols_mask_entities
                    ].view(batch_size, -1, model_features.shape[-1]),
                )
                entity_types = torch.sum(special_symbols_mask_entities, dim=1)[0].item()
                ned_type_logits = re_ned_entities_logits[:, :, :entity_types]
                re_entities_logits = re_ned_entities_logits[:, :, entity_types:]

                if self.config.entity_type_loss:
                    ned_type_probabilities = torch.sigmoid(ned_type_logits)
                    ned_type_predictions = ned_type_probabilities.argmax(dim=-1)

                    if self.config.add_entity_embedding:
                        special_symbols_representation = model_features[
                            special_symbols_mask_entities
                        ].view(batch_size, entity_types, -1)

                        entities_representation = torch.einsum(
                            "bsp,bpe->bse",
                            ned_type_probabilities,
                            special_symbols_representation,
                        )
                        model_subject_features = torch.cat(
                            [model_subject_features, entities_representation], dim=-1
                        )
                re_entities_probabilities = torch.sigmoid(re_entities_logits)
                re_entities_predictions = re_entities_probabilities.round()
            else:
                (
                    ned_type_logits,
                    ned_type_probabilities,
                    re_entities_logits,
                    re_entities_probabilities,
                ) = (None, None, None, None)
                ned_type_predictions, re_entities_predictions = (
                    torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
                    torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
                )

            # Compute relation logits
            re_logits = self.compute_relation_logits(
                model_subject_features,
                model_features[special_symbols_mask].view(
                    batch_size, -1, model_features.shape[-1]
                ),
            )

            re_probabilities = torch.softmax(re_logits, dim=-1)
            # we set a thresshold instead of argmax in cause it needs to be tweaked
            re_predictions = re_probabilities[:, :, :, :, 1] > relation_threshold
            re_probabilities = re_probabilities[:, :, :, :, 1]

        else:
            (
                ned_type_logits,
                ned_type_probabilities,
                re_entities_logits,
                re_entities_probabilities,
            ) = (None, None, None, None)
            ned_type_predictions, re_entities_predictions = (
                torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
                torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
            )
            re_logits, re_probabilities, re_predictions = (
                torch.zeros(
                    [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
                ).to(input_ids.device),
                torch.zeros(
                    [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
                ).to(input_ids.device),
                torch.zeros(
                    [batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
                ).to(input_ids.device),
            )

        # output build
        output_dict = dict(
            batch_size=batch_size,
            ned_start_logits=ned_start_logits,
            ned_start_probabilities=ned_start_probabilities,
            ned_start_predictions=ned_start_predictions,
            ned_end_logits=ned_end_logits,
            ned_end_probabilities=ned_end_probabilities,
            ned_end_predictions=ned_end_predictions,
            ned_type_logits=ned_type_logits,
            ned_type_probabilities=ned_type_probabilities,
            ned_type_predictions=ned_type_predictions,
            re_entities_logits=re_entities_logits,
            re_entities_probabilities=re_entities_probabilities,
            re_entities_predictions=re_entities_predictions,
            re_logits=re_logits,
            re_probabilities=re_probabilities,
            re_predictions=re_predictions,
        )

        if (
            start_labels is not None
            and end_labels is not None
            and relation_labels is not None
            and is_prediction is False
        ):
            ned_start_loss = self.compute_loss(ned_start_logits, ned_start_labels)
            end_labels[end_labels > 0] = 1
            ned_end_loss = self.compute_loss(ned_end_logits, end_labels)
            if self.config.entity_type_loss or self.relation_disambiguation_loss:
                ned_type_loss = self.compute_ned_type_loss(
                    disambiguation_labels,
                    re_ned_entities_logits,
                    ned_type_logits,
                    re_entities_logits,
                    entity_types,
                    (model_subject_features != -100).all(2),
                )
            relation_loss = self.compute_relation_loss(relation_labels, re_logits)
            # compute loss. We can skip the relation loss if we are in the first epochs (optional)
            if self.config.entity_type_loss or self.relation_disambiguation_loss:
                output_dict["loss"] = (
                    ned_start_loss + ned_end_loss + relation_loss + ned_type_loss
                ) / 4
                output_dict["ned_type_loss"] = ned_type_loss
            else:
                output_dict["loss"] = ((1 / 20) * (ned_start_loss + ned_end_loss)) + (
                    (9 / 10) * relation_loss
                )
            output_dict["ned_start_loss"] = ned_start_loss
            output_dict["ned_end_loss"] = ned_end_loss
            output_dict["re_loss"] = relation_loss

        return output_dict