---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Aircraft position displayed on screen is erratic.
- text: Frequent signal loss during communication with ATC.
- text: Radar detects a non-existent aircraft nearby.
- text: Unexpected loss of altitude while in autopilot mode.
- text: Cabin lighting and screens are controlled unexpectedly.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
datasets:
- Petitepoupoune/Cyberattacks_aviation
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Petitepoupoune/Cyberattacks_aviation
type: Petitepoupoune/Cyberattacks_aviation
split: test
metrics:
- type: accuracy
value: 0.6666666666666666
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Petitepoupoune/Cyberattacks_aviation](https://huggingface.co/datasets/Petitepoupoune/Cyberattacks_aviation) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
- **Training Dataset:** [Petitepoupoune/Cyberattacks_aviation](https://huggingface.co/datasets/Petitepoupoune/Cyberattacks_aviation)
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- 'The radar display suddenly shows multiple ghost aircraft.'
- 'Engine parameters display fluctuates, but engine runs fine.'
- 'Pilot receives incorrect weather data from ground station.'
|
| 1 | - 'Navigation coordinates keep shifting without any inputs.'
- 'Navigation system reports inconsistent coordinates.'
|
| 2 | - 'Unable to establish secure communication with the ground.'
- 'Pilot headset communication filled with static noises.'
- 'GPS fails to lock onto satellites during flight.'
|
| 3 | - 'Unexpected engine alert appeared without apparent malfunction.'
- 'Air Traffic Control reports conflicting position data.'
- 'Ground proximity warnings trigger in normal flight conditions.'
|
| 4 | - 'Passenger internet shows anomalies, potentially exposing data.'
- 'Unusual network activity detected in cockpit systems.'
- 'Passengers report unauthorized access to personal devices.'
|
| 5 | - 'Pilots unable to update flight plan due to system freeze.'
- 'Cabin displays turn off intermittently without reason.'
- 'Unusual delay in system response when adjusting controls.'
|
| 6 | - 'Incorrect altitude data reported by onboard instruments.'
- 'Cockpit alarm indicates incorrect fuel levels.'
- 'Unexpected power fluctuation in avionics systems.'
|
| 7 | - 'Aircraft is directed off course by autopilot without input.'
- 'Sudden and unexplained decrease in engine thrust.'
- 'Aircraft enters unexpected descent despite normal controls.'
|
| 8 | - 'In-flight entertainment malfunctions and reboots frequently.'
- 'Unexpected system update initiated during flight.'
- 'Sudden reboot of all electronic systems mid-flight.'
|
| 9 | - 'Minor turbulence encountered during flight.'
- 'Pilot reports fatigue after long flight hours.'
- 'Passenger complains about seatbelt malfunction.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.6667 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Petitepoupoune/SetFit_Cyberaviation")
# Run inference
preds = model("Radar detects a non-existent aircraft nearby.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 6.7857 | 10 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 4 |
| 1 | 2 |
| 2 | 6 |
| 3 | 3 |
| 4 | 4 |
| 5 | 6 |
| 6 | 3 |
| 7 | 4 |
| 8 | 4 |
| 9 | 6 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0095 | 1 | 0.2581 | - |
| 0.4762 | 50 | 0.1219 | - |
| 0.9524 | 100 | 0.0351 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```