File size: 39,406 Bytes
8fcf809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
'''This class serves as a intermediate layer for tensorboard frontend and timeVis backend'''
import os
import sys
import json
import time
import torch
import numpy as np
import pickle
import shutil
import torch.nn
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
import torchvision
from scipy.special import softmax
# timevis_path = "D:\\code-space\\DLVisDebugger" #limy
timevis_path = "../../DLVisDebugger" #xianglin#yvonne
sys.path.append(timevis_path)
from singleVis.utils import *
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.edge_dataset import DataHandler, HybridDataHandler
from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
# kcHybridDenseALSpatialEdgeConstructor,GlobalTemporalEdgeConstructor
from singleVis.trajectory_manager import Recommender
from singleVis.eval.evaluator import ALEvaluator
from singleVis.segmenter import DenseALSegmenter
# active_learning_path = "D:\\code-space\\ActiveLearning" # limy
active_learning_path = "../../ActiveLearning"
sys.path.append(active_learning_path)
class TimeVisBackend:
def __init__(self, data_provider, projector, vis, evaluator, **hyperparameters) -> None:
self.data_provider = data_provider
self.projector = projector
self.vis = vis
self.evaluator = evaluator
self.hyperparameters = hyperparameters
#################################################################################################################
# #
# data Panel #
# #
#################################################################################################################
def batch_inv_preserve(self, epoch, data):
"""
get inverse confidence for a single point
:param epoch: int
:param data: numpy.ndarray
:return l: boolean, whether reconstruction data have the same prediction
:return conf_diff: float, (0, 1), confidence difference
"""
embedding = self.projector.batch_project(epoch, data)
recon = self.projector.batch_inverse(epoch, embedding)
ori_pred = self.data_provider.get_pred(epoch, data)
new_pred = self.data_provider.get_pred(epoch, recon)
ori_pred = softmax(ori_pred, axis=1)
new_pred = softmax(new_pred, axis=1)
old_label = ori_pred.argmax(-1)
new_label = new_pred.argmax(-1)
l = old_label == new_label
old_conf = [ori_pred[i, old_label[i]] for i in range(len(old_label))]
new_conf = [new_pred[i, old_label[i]] for i in range(len(old_label))]
old_conf = np.array(old_conf)
new_conf = np.array(new_conf)
conf_diff = old_conf - new_conf
return l, conf_diff
#################################################################################################################
# #
# Search Panel #
# #
#################################################################################################################
# TODO: fix bugs accroding to new api
# customized features
def filter_label(self, label, epoch_id):
try:
index = self.data_provider.classes.index(label)
except:
index = -1
train_labels = self.data_provider.train_labels(epoch_id)
test_labels = self.data_provider.test_labels(epoch_id)
labels = np.concatenate((train_labels, test_labels), 0)
idxs = np.argwhere(labels == index)
idxs = np.squeeze(idxs)
return idxs
def filter_type(self, type, epoch_id):
if type == "train":
res = self.get_epoch_index(epoch_id)
elif type == "test":
train_num = self.data_provider.train_num
test_num = self.data_provider.test_num
res = list(range(train_num, train_num+ test_num, 1))
elif type == "unlabel":
labeled = np.array(self.get_epoch_index(epoch_id))
train_num = self.data_provider.train_num
all_data = np.arange(train_num)
unlabeled = np.setdiff1d(all_data, labeled)
res = unlabeled.tolist()
else:
# all data
train_num = self.data_provider.train_num
test_num = self.data_provider.test_num
res = list(range(0, train_num + test_num, 1))
return res
def filter_conf(self, conf_min, conf_max, epoch_id):
train_data = self.data_provider.train_representation(epoch_id)
test_data =self.data_provider.test_representation(epoch_id)
data = np.concatenate((train_data, test_data), axis=0)
pred = self.data_provider.get_pred(epoch_id, data)
scores = np.amax(softmax(pred, axis=1), axis=1)
res = np.argwhere(np.logical_and(scores<=conf_max, scores>=conf_min)).squeeze().tolist()
return res
#################################################################################################################
# #
# Helper Functions #
# #
#################################################################################################################
def save_acc_and_rej(self, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.data_provider.content_path, "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user...")
def get_epoch_index(self, epoch_id):
"""get the training data index for an epoch"""
index_file = os.path.join(self.data_provider.model_path, "Epoch_{:d}".format(epoch_id), "index.json")
index = load_labelled_data_index(index_file)
return index
def reset(self):
return
class ActiveLearningTimeVisBackend(TimeVisBackend):
def __init__(self, data_provider, projector, trainer, vis, evaluator, dense, **hyperparameters) -> None:
super().__init__(data_provider, projector, vis, evaluator, **hyperparameters)
self.trainer = trainer
self.dense = dense
def save_acc_and_rej(self, iteration, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration), "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user at Iteration {}...".format(iteration))
def reset(self, iteration):
# delete [iteration,...)
max_i = self.get_max_iter()
for i in range(iteration, max_i+1, 1):
path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(i))
shutil.rmtree(path)
iter_structure_path = os.path.join(self.data_provider.content_path, "iteration_structure.json")
with open(iter_structure_path, "r") as f:
i_s = json.load(f)
new_is = list()
for item in i_s:
value = item["value"]
if value < iteration:
new_is.append(item)
with open(iter_structure_path, "w") as f:
json.dump(new_is, f)
print("Successfully remove cache data!")
def get_epoch_index(self, iteration):
"""get the training data index for an epoch"""
index_file = os.path.join(self.data_provider.model_path, "Iteration_{:d}".format(iteration), "index.json")
index = load_labelled_data_index(index_file)
return index
def al_query(self, iteration, budget, strategy, acc_idxs, rej_idxs):
"""get the index of new selection from different strategies"""
CONTENT_PATH = self.data_provider.content_path
NUM_QUERY = budget
GPU = self.hyperparameters["GPU"]
NET = self.hyperparameters["TRAINING"]["NET"]
DATA_NAME = self.hyperparameters["DATASET"]
sys.path.append(CONTENT_PATH)
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# loading neural network
import Model.model as subject_model
task_model = eval("subject_model.{}()".format(NET))
task_model_type = "pytorch"
# start experiment
n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000
n_test = self.hyperparameters["TRAINING"]['test_num'] # 10000
resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration))
idxs_lb = np.array(json.load(open(os.path.join(resume_path, "index.json"), "r")))
state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device('cpu'))
task_model.load_state_dict(state_dict)
NUM_INIT_LB = len(idxs_lb)
print('resume from iteration {}'.format(iteration))
print('number of labeled pool: {}'.format(NUM_INIT_LB))
print('number of unlabeled pool: {}'.format(n_pool - NUM_INIT_LB))
print('number of testing pool: {}'.format(n_test))
# here the training handlers and testing handlers are different
complete_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_te'])
if strategy == "Random":
from query_strategies.random import RandomSampling
idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0)
curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0)
q_strategy = RandomSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print(DATA_NAME)
print(type(q_strategy).__name__)
print('================Round {:d}==============='.format(iteration+1))
# query new samples
t0 = time.time()
new_indices, scores = q_strategy.query(NUM_QUERY)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Uncertainty":
from query_strategies.LeastConfidence import LeastConfidenceSampling
idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0)
curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0)
q_strategy = LeastConfidenceSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print(DATA_NAME)
print(type(q_strategy).__name__)
print('================Round {:d}==============='.format(iteration+1))
# query new samples
t0 = time.time()
new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY, idxs_selected)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
# elif strategy == "Diversity":
# from query_strategies.coreset import CoreSetSampling
# q_strategy = CoreSetSampling(task_model, task_model_type, n_pool, 512, idxs_lb, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# # print information
# print(DATA_NAME)
# print(type(q_strategy).__name__)
# print('================Round {:d}==============='.format(iteration+1))
# embedding = q_strategy.get_embedding(complete_dataset)
# # query new samples
# t0 = time.time()
# new_indices, scores = q_strategy.query(embedding, NUM_QUERY)
# t1 = time.time()
# print("Query time is {:.2f}".format(t1-t0))
# elif strategy == "Hybrid":
# from query_strategies.badge import BadgeSampling
# q_strategy = BadgeSampling(task_model, task_model_type, n_pool, 512, idxs_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# # print information
# print(DATA_NAME)
# print(type(q_strategy).__name__)
# print('================Round {:d}==============='.format(iteration+1))
# # query new samples
# t0 = time.time()
# new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY)
# t1 = time.time()
# print("Query time is {:.2f}".format(t1-t0))
elif strategy == "TBSampling":
# TODO hard coded parameters...
period = 80
print(DATA_NAME)
print("TBSampling")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Feedback":
# TODO hard coded parameters...suggest_abnormal
period = 80
print(DATA_NAME)
print("Feedback")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
else:
raise NotImplementedError
# TODO return the suggest labels, need to develop pesudo label generation technique in the future
true_labels = self.data_provider.train_labels(iteration)
return new_indices, true_labels[new_indices], scores
def al_train(self, iteration, indices):
CONTENT_PATH = self.data_provider.content_path
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# for reproduce purpose
print("New indices:\t{}".format(len(indices)))
self.save_human_selection(iteration, indices)
lb_idx = self.get_epoch_index(iteration)
train_idx = np.hstack((lb_idx, indices))
print("Training indices:\t{}".format(len(train_idx)))
print("Valid indices:\t{}".format(len(set(train_idx))))
TOTAL_EPOCH = self.hyperparameters["TRAINING"]["total_epoch"]
NET = self.hyperparameters["TRAINING"]["NET"]
DEVICE = self.data_provider.DEVICE
NEW_ITERATION = self.get_max_iter() + 1
GPU = self.hyperparameters["GPU"]
DATA_NAME = self.hyperparameters["DATASET"]
sys.path.append(CONTENT_PATH)
# loading neural network
from Model.model import resnet18
task_model = resnet18()
resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration))
state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device("cpu"))
task_model.load_state_dict(state_dict)
self.save_iteration_index(NEW_ITERATION, train_idx)
task_model_type = "pytorch"
# start experiment
n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000
save_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(NEW_ITERATION))
os.makedirs(save_path, exist_ok=True)
from query_strategies.random import RandomSampling
q_strategy = RandomSampling(task_model, task_model_type, n_pool, lb_idx, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print('================Round {:d}==============='.format(NEW_ITERATION))
# update
q_strategy.update_lb_idxs(train_idx)
resnet_model = resnet18()
train_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_tr'])
test_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=False, transform=self.hyperparameters["TRAINING"]['transform_te'])
t1 = time.time()
q_strategy.train(total_epoch=TOTAL_EPOCH, task_model=resnet_model, complete_dataset=train_dataset,save_path=None)
t2 = time.time()
print("Training time is {:.2f}".format(t2-t1))
self.save_subject_model(NEW_ITERATION, q_strategy.task_model.state_dict())
# compute accuracy at each round
accu = q_strategy.test_accu(test_dataset)
print('Accuracy {:.3f}'.format(100*accu))
def get_max_iter(self):
path = os.path.join(self.data_provider.content_path, "Model")
dir_list = os.listdir(path)
max_iter = -1
for dir in dir_list:
if "Iteration_" in dir:
i = int(dir.replace("Iteration_",""))
max_iter = max(max_iter, i)
return max_iter
def save_human_selection(self, iteration, indices):
"""
save the selected index message from DVI frontend
:param epoch_id:
:param indices: list, selected indices
:return:
"""
save_location = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "human_select.json")
with open(save_location, "w") as f:
json.dump(indices, f)
def save_iteration_index(self, iteration, idxs):
new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration))
os.makedirs(new_iteration_dir, exist_ok=True)
save_location = os.path.join(new_iteration_dir, "index.json")
with open(save_location, "w") as f:
json.dump(idxs.tolist(), f)
def save_subject_model(self, iteration, state_dict):
new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration))
model_path = os.path.join(new_iteration_dir, "subject_model.pth")
torch.save(state_dict, model_path)
def vis_train(self, iteration, **config):
# preprocess
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data(iteration)
if B_N_EPOCHS != 0:
LEN = len(self.data_provider.train_labels(iteration))
self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND)
# train visualization model
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
# DEVICE = torch.device("cuda:{:}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
################################################# VISUALIZATION PARAMETERS ########################################
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
LAMBDA = config["VISUALIZATION"]["LAMBDA"]
HIDDEN_LAYER = config["VISUALIZATION"]["HIDDEN_LAYER"]
N_NEIGHBORS = config["VISUALIZATION"]["N_NEIGHBORS"]
MAX_EPOCH = config["VISUALIZATION"]["MAX_EPOCH"]
S_N_EPOCHS = config["VISUALIZATION"]["S_N_EPOCHS"]
PATIENT = config["VISUALIZATION"]["PATIENT"]
VIS_MODEL_NAME = config["VISUALIZATION"]["VIS_MODEL_NAME"]
RESOLUTION = config["VISUALIZATION"]["RESOLUTION"]
EVALUATION_NAME = config["VISUALIZATION"]["EVALUATION_NAME"]
NET = config["TRAINING"]["NET"]
if self.dense:
# TODO test this part
raise NotImplementedError
epoch_num = config["TRAINING"]["total_epoch"]
INIT_NUM = config["VISUALIZATION"]["INIT_NUM"]
MAX_HAUSDORFF = config["VISUALIZATION"]["MAX_HAUSDORFF"]
ALPHA = config["VISUALIZATION"]["ALPHA"]
BETA = config["VISUALIZATION"]["BETA"]
T_N_EPOCHS = config["VISUALIZATION"]["T_N_EPOCHS"]
segmenter = DenseALSegmenter(data_provider=self.data_provider, threshold=78.5, epoch_num=epoch_num)
# segment epoch
t0 = time.time()
SEGMENTS = segmenter.segment(iteration)
t1 = time.time()
print(SEGMENTS)
segment_path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration),"segments.json")
with open(segment_path, "w") as f:
json.dump(SEGMENTS, f)
LEN = self.data_provider.label_num(iteration)
prev_selected = np.random.choice(np.arange(LEN), size=INIT_NUM, replace=False)
prev_embedding = None
start_point = len(SEGMENTS)-1
c0=None
d0=None
for seg in range(start_point,-1,-1):
epoch_start, epoch_end = SEGMENTS[seg]
self.data_provider.update_interval(epoch_s=epoch_start, epoch_e=epoch_end)
optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
t2 = time.time()
spatial_cons = kcHybridDenseALSpatialEdgeConstructor(data_provider=self.data_provider, init_num=INIT_NUM, s_n_epochs=S_N_EPOCHS, b_n_epochs=B_N_EPOCHS, n_neighbors=N_NEIGHBORS, MAX_HAUSDORFF=MAX_HAUSDORFF, ALPHA=ALPHA, BETA=BETA, iteration=iteration, init_idxs=prev_selected, init_embeddings=prev_embedding, c0=c0, d0=d0)
s_edge_to, s_edge_from, s_probs, feature_vectors, embedded, coefficient, time_step_nums, time_step_idxs_list, knn_indices, sigmas, rhos, attention, (c0,d0) = spatial_cons.construct()
temporal_cons = GlobalTemporalEdgeConstructor(X=feature_vectors, time_step_nums=time_step_nums, sigmas=sigmas, rhos=rhos, n_neighbors=N_NEIGHBORS, n_epochs=T_N_EPOCHS)
t_edge_to, t_edge_from, t_probs = temporal_cons.construct()
t3 = time.time()
edge_to = np.concatenate((s_edge_to, t_edge_to),axis=0)
edge_from = np.concatenate((s_edge_from, t_edge_from), axis=0)
probs = np.concatenate((s_probs, t_probs), axis=0)
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
# save result
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "complex_construction" not in evaluation.keys():
evaluation["complex_construction"] = dict()
evaluation["complex_construction"][str(seg)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
print("constructing timeVis complex for {}-th segment in {:.1f} seconds.".format(seg, t3-t2))
dataset = HybridDataHandler(edge_to, edge_from, feature_vectors, attention, embedded, coefficient)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chosse sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler)
self.trainer.update_vis_model(model)
self.trainer.update_optimizer(optimizer)
self.trainer.update_lr_scheduler(lr_scheduler)
self.trainer.update_edge_loader(edge_loader)
t2=time.time()
self.trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(seg)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
self.trainer.save(save_dir=os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration)), file_name="{}_{}".format(VIS_MODEL_NAME, seg))
model = self.trainer.model
# update prev_idxs and prev_embedding
prev_selected = time_step_idxs_list[0]
prev_data = torch.from_numpy(feature_vectors[:len(prev_selected)]).to(dtype=torch.float32, device=self.data_provider.DEVICE)
model.to(device=self.data_provider.DEVICE)
prev_embedding = model.encoder(prev_data).cpu().detach().numpy()
# raise NotImplementedError
print("Successful train all visualization models!")
else:
t0 = time.time()
spatial_cons = SingleEpochSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, 15)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
# save result
save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "complex_construction" not in evaluation.keys():
evaluation["complex_construction"] = dict()
evaluation["complex_construction"][str(iteration)] = round(t1-t0, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
print("constructing timeVis complex in {:.1f} seconds.".format(t1-t0))
dataset = DataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chosse sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=512, sampler=sampler)
self.trainer.update_edge_loader(edge_loader)
t2=time.time()
self.trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(iteration)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration))
os.makedirs(save_dir, exist_ok=True)
self.trainer.save(save_dir=save_dir, file_name=VIS_MODEL_NAME)
# TODO evaluate visualization model, train and test
evaluator = ALEvaluator(self.data_provider, self.projector)
evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME)
#################################################################################################################
# #
# Sample Selection #
# #
#################################################################################################################
def _save(self, iteration, ftm):
with open(os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl'), 'wb') as f:
pickle.dump(ftm, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self, iteration, lb_idxs, period=80):
# prepare trajectory
embedding_path = os.path.join(self.data_provider.content_path,"Model", "Iteration_{}".format(iteration),'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
print("Load trajectories from cache!")
else:
# extract samples
train_num = self.data_provider.train_num
# change epoch_NUM
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
embeddings_2d = np.zeros((epoch_num, train_num, 2))
for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p):
# for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p):
# id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p
id = (i - self.data_provider.s)//self.data_provider.p
embeddings_2d[id] = self.projector.batch_project(iteration, i, self.data_provider.train_representation(iteration, i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty
uncertainty_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
samples = self.data_provider.train_representation(iteration, epoch_num)
pred = self.data_provider.get_pred(iteration, epoch_num, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
ulb_idxs = self.data_provider.get_unlabeled_idx(len(uncertainty), lb_idxs)
# prepare sampling manager
ntd_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl')
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty[ulb_idxs], trajectories[ulb_idxs], 30, period=period,metric="a")
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(iteration, ntd)
return ntd, ulb_idxs
def _suggest_abnormal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd,ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs], scores
def _suggest_normal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd, ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs]
class AnormalyTimeVisBackend(TimeVisBackend):
def __init__(self, data_provider, projector, vis, evaluator, period, **hyperparameters) -> None:
super().__init__(data_provider, projector, vis, evaluator, **hyperparameters)
self.period = period
file_path = os.path.join(self.data_provider.content_path, 'clean_label.json')
with open(file_path, "r") as f:
self.clean_labels = np.array(json.load(f))
def reset(self):
return
#################################################################################################################
# #
# Anormaly Detection #
# #
#################################################################################################################
def _save(self, ntd):
with open(os.path.join(self.data_provider.content_path, 'sample_recommender.pkl'), 'wb') as f:
pickle.dump(ntd, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self):
# prepare trajectories
embedding_path = os.path.join(self.data_provider.content_path, 'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
else:
# extract samples
train_num = self.data_provider.train_num
# change epoch_NUM
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
embeddings_2d = np.zeros((epoch_num, train_num, 2))
for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p):
# for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p):
# id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p
id = (i - self.data_provider.s)//self.data_provider.p
embeddings_2d[id] = self.projector.batch_project(i, self.data_provider.train_representation(i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty scores
uncertainty_path = os.path.join(self.data_provider.content_path, 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
samples = self.data_provider.train_representation(epoch_num)
pred = self.data_provider.get_pred(epoch_num, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
# prepare sampling manager
ntd_path = os.path.join(self.data_provider.content_path, 'sample_recommender.pkl')
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty, trajectories, 30,period=self.period,metric="a")
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(ntd)
return ntd
def suggest_abnormal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, scores, suggest_labels
def suggest_normal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, suggest_labels
|