--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: xwhisper-kh-base results: [] --- # xwhisper-kh-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2711 - Wer: 74.0769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8338 | 1.0 | 1087 | 0.4122 | 90.5307 | | 0.3136 | 2.0 | 2174 | 0.3022 | 80.1699 | | 0.2199 | 3.0 | 3261 | 0.2599 | 76.6601 | | 0.1675 | 4.0 | 4348 | 0.2483 | 74.3577 | | 0.1294 | 5.0 | 5435 | 0.2483 | 72.6309 | | 0.1001 | 6.0 | 6522 | 0.2555 | 74.8982 | | 0.0759 | 7.0 | 7609 | 0.2711 | 74.0769 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3