Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,4 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
from peft import PeftModel, PeftConfig
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
import torch
|
6 |
|
7 |
-
|
8 |
-
config = PeftConfig.from_pretrained("PhantHive/bigbrain")
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
|
10 |
-
model = PeftModel.from_pretrained(model, "PhantHive/bigbrain")
|
11 |
-
|
12 |
-
# Load the tokenizer
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
|
14 |
-
|
15 |
-
|
16 |
-
def greet(text):
|
17 |
-
batch = tokenizer(f"'{text}' ->: ", return_tensors='pt')
|
18 |
-
|
19 |
-
# Use torch.no_grad to disable gradient calculation
|
20 |
-
with torch.no_grad():
|
21 |
-
output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=50)
|
22 |
-
|
23 |
-
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
24 |
-
|
25 |
-
|
26 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
27 |
-
iface.launch()
|
|
|
1 |
+
# Use a pipeline as a high-level helper
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
+
pipe = pipeline("text-generation", model="PhantHive/bigbrain")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|