QagentS commited on
Commit
ea385eb
1 Parent(s): f9f41fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -170
README.md CHANGED
@@ -1,201 +1,164 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
 
201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ tags:
8
+ - api
9
+ - open-api
10
+ - swagger
11
+ - api doc
12
+ - api call
13
+ - code
14
+ - instruction_tuned
15
+ - basemodel
16
+ - pytorch
17
+ - RL Tuned
18
+ - text-generation-inferenc
19
  library_name: transformers
20
+ pipeline_tag: text-generation
21
  ---
22
+ # pip-api-expert
23
 
24
+ [pipableAi](https://pipable.ai/)
25
 
26
+ [colab_notebook]()
27
 
28
+ ## What have we built?
29
+ A 1.3 bn state of the art model for api calling , documentation, testing management.
30
+ The tasks that the model can accomplish are the following.
31
 
32
+ ```javascript
33
+ 1. Convert any bad format text to open api
34
+ 2. Convert any bad format text to mark down.
35
+ 3. Given docs generate and execute the api call in python
36
+ ```
37
 
38
+ ## How we built it?
39
 
40
+ We used a simulator and a form of policy gradient to train the model to self instruct itself to make documents and then perform executable calls on the document.
41
 
 
42
 
 
43
 
 
 
 
 
 
 
 
44
 
45
+ ## Benchmarking :
46
+ For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
47
+ Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
48
+ The benchmark contains 2200 test data points
49
+ Here is the link to run the evaluation:
50
 
 
51
 
 
 
 
52
 
53
+ ## License
54
+ The model is open source under apache 2.0. License
55
 
56
+ ## Usage
57
 
 
58
 
59
+ ### Installation
60
 
61
+ ```bash
62
+ pip install transformers
63
 
64
+ ```
65
 
66
+ ### Prompt
67
+ ```python
68
+ prompt = f"""<schema>{schema}</schema>
69
+ <question>{question}</question>
70
+ <sql>"""
71
+ ```
72
 
73
+ ### PyTorch
74
+ ```python
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+ device = "cuda"
77
+ model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b")
78
+ tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
79
 
80
+ inputs = tokenizer(text, return_tensors="pt")
81
+ outputs = model.generate(**inputs, max_new_tokens=200)
82
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
83
+ ```
84
 
 
85
 
86
+ ## Examples
87
 
88
+ ### Schema
89
+ ```sql
90
+ CREATE TABLE Products (
91
+ product_id number,
92
+ parent_product_id number,
93
+ product_name text,
94
+ product_price number,
95
+ product_color text,
96
+ product_size text,
97
+ product_description text);
98
 
99
+ CREATE TABLE Customers (
100
+ customer_id number,
101
+ gender_code text,
102
+ customer_first_name text,
103
+ customer_middle_initial text,
104
+ customer_last_name text,
105
+ email_address text,
106
+ login_name text,
107
+ login_password text,
108
+ phone_number text,
109
+ address_line_1 text,
110
+ town_city text,
111
+ county text,
112
+ country text);
113
 
114
+ CREATE TABLE Customer_Payment_Methods (
115
+ customer_id number,
116
+ payment_method_code text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
+ CREATE TABLE Invoices (
119
+ invoice_number number,
120
+ invoice_status_code text,
121
+ invoice_date time);
122
 
123
+ CREATE TABLE Orders (
124
+ order_id number,
125
+ customer_id number,
126
+ order_status_code text,
127
+ date_order_placed time);
128
+
129
+ CREATE TABLE Order_Items (
130
+ order_item_id number,
131
+ product_id number,
132
+ order_id number,
133
+ order_item_status_code text);
134
+
135
+ CREATE TABLE Shipments (
136
+ shipment_id number,
137
+ order_id number,
138
+ invoice_number number,
139
+ shipment_tracking_number text,
140
+ shipment_date time);
141
+
142
+ CREATE TABLE Shipment_Items (
143
+ shipment_id number,
144
+ order_item_id number);
145
+ ```
146
+
147
+ ### Questions
148
+ What are the email address, town and county of the customers who are of the least common gender?
149
+ ```sql
150
+ SELECT email_address , town_city , county FROM customers GROUP BY gender_code ORDER BY count(*) ASC LIMIT 1
151
+ ```
152
+
153
+ What are the product price and the product size of the products whose price is above average?
154
+ ```sql
155
+ SELECT product_price , product_size FROM products WHERE product_price > (SELECT avg(product_price) FROM products)
156
+ ```
157
+
158
+ Which customers did not make any orders? List the first name, middle initial and last name.
159
+ ```sql
160
+ SELECT T1.customer_first_name , T1.customer_middle_initial , T1.customer_last_name FROM Customers AS T1 WHERE T1.customer_id NOT IN (SELECT T2.customer_id FROM Orders AS T2)
161
+ ```
162
+
163
+ ### Team
164
+ Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya