---
license: apache-2.0
language:
- en
metrics:
- accuracy
tags:
- api
- open-api
- swagger
- api doc
- api call
- code
- instruction_tuned
- basemodel
- pytorch
- RL Tuned
- text-generation-inferenc
library_name: transformers
pipeline_tag: text-generation
---
# pip-api-expert
[pipableAi](https://pipable.ai/)
[colab_notebook]()
## What have we built?
A 1.3 bn state of the art model for api calling , documentation, testing management.
The tasks that the model can accomplish are the following.
```javascript
1. Convert any bad format text to open api
2. Convert any bad format text to mark down.
3. Given docs generate and execute the api call in python
```
## How we built it?
We used a simulator and a form of policy gradient to train the model to self instruct itself to make documents and then perform executable calls on the document.
## Benchmarking :
For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
The benchmark contains 2200 test data points
Here is the link to run the evaluation:
## License
The model is open source under apache 2.0. License
## Usage
### Installation
```bash
pip install transformers
```
### Prompt
```python
prompt = f"""{schema}
{question}
"""
```
### PyTorch
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b")
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('')[1].split('')[0])
```
## Examples
### Schema
```sql
CREATE TABLE Products (
product_id number,
parent_product_id number,
product_name text,
product_price number,
product_color text,
product_size text,
product_description text);
CREATE TABLE Customers (
customer_id number,
gender_code text,
customer_first_name text,
customer_middle_initial text,
customer_last_name text,
email_address text,
login_name text,
login_password text,
phone_number text,
address_line_1 text,
town_city text,
county text,
country text);
CREATE TABLE Customer_Payment_Methods (
customer_id number,
payment_method_code text);
CREATE TABLE Invoices (
invoice_number number,
invoice_status_code text,
invoice_date time);
CREATE TABLE Orders (
order_id number,
customer_id number,
order_status_code text,
date_order_placed time);
CREATE TABLE Order_Items (
order_item_id number,
product_id number,
order_id number,
order_item_status_code text);
CREATE TABLE Shipments (
shipment_id number,
order_id number,
invoice_number number,
shipment_tracking_number text,
shipment_date time);
CREATE TABLE Shipment_Items (
shipment_id number,
order_item_id number);
```
### Questions
What are the email address, town and county of the customers who are of the least common gender?
```sql
SELECT email_address , town_city , county FROM customers GROUP BY gender_code ORDER BY count(*) ASC LIMIT 1
```
What are the product price and the product size of the products whose price is above average?
```sql
SELECT product_price , product_size FROM products WHERE product_price > (SELECT avg(product_price) FROM products)
```
Which customers did not make any orders? List the first name, middle initial and last name.
```sql
SELECT T1.customer_first_name , T1.customer_middle_initial , T1.customer_last_name FROM Customers AS T1 WHERE T1.customer_id NOT IN (SELECT T2.customer_id FROM Orders AS T2)
```
### Team
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya