Update README.md
Browse files
README.md
CHANGED
@@ -91,8 +91,8 @@ prompt = f"""<schema>{schema}</schema>
|
|
91 |
```python
|
92 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
93 |
device = "cuda"
|
94 |
-
model = AutoModelForCausalLM.from_pretrained("PipableAI/
|
95 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
96 |
|
97 |
inputs = tokenizer(text, return_tensors="pt")
|
98 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
@@ -103,8 +103,8 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].s
|
|
103 |
```python
|
104 |
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer
|
105 |
device = "cuda"
|
106 |
-
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/
|
107 |
-
tokenizer = AutoTokenizer.from_pretrained("PipableAI/
|
108 |
|
109 |
inputs = tokenizer(text, return_tensors="jax")
|
110 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
@@ -115,8 +115,8 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].s
|
|
115 |
```python
|
116 |
from transformers import TFAutoModelForCausalLM, AutoTokenizer
|
117 |
device = "cuda"
|
118 |
-
model = TFAutoModelForCausalLM.from_pretrained("PipableAI/
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained("PipableAI/
|
120 |
|
121 |
inputs = tokenizer(text, return_tensors="tf")
|
122 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
|
|
91 |
```python
|
92 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
93 |
device = "cuda"
|
94 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
96 |
|
97 |
inputs = tokenizer(text, return_tensors="pt")
|
98 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
|
|
103 |
```python
|
104 |
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer
|
105 |
device = "cuda"
|
106 |
+
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
107 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
108 |
|
109 |
inputs = tokenizer(text, return_tensors="jax")
|
110 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
|
|
115 |
```python
|
116 |
from transformers import TFAutoModelForCausalLM, AutoTokenizer
|
117 |
device = "cuda"
|
118 |
+
model = TFAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
120 |
|
121 |
inputs = tokenizer(text, return_tensors="tf")
|
122 |
outputs = model.generate(**inputs, max_new_tokens=200)
|