Lawrence-cj commited on
Commit
e102b35
·
verified ·
1 Parent(s): 937eb4b

add PixArt-Sigma model card

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +129 -1
  3. asset/4K_image.jpg +3 -0
  4. asset/logo-sigma.png +0 -0
  5. asset/model.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ asset/4K_image.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,131 @@
1
  ---
2
- license: openrail
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: openrail++
3
+ tags:
4
+ - text-to-image
5
+ - PixArt-Σ
6
  ---
7
+
8
+ <p align="center">
9
+ <img src="asset/logo-sigma.png" height=120>
10
+ </p>
11
+
12
+ <div style="display:flex;justify-content: center">
13
+ <a href="https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a> &ensp;
14
+ <a href="https://pixart-alpha.github.io/PixArt-sigma-project/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
15
+ <a href="https://arxiv.org/abs/2403.04692"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
16
+ <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
17
+ </div>
18
+
19
+ # 🐱 PixArt-Σ Model Card
20
+ ![row01](asset/4K_image.jpg)
21
+
22
+ ## Model
23
+ ![pipeline](asset/model.png)
24
+
25
+ [PixArt-Σ](https://arxiv.org/abs/2403.04692) consists of pure transformer blocks for latent diffusion:
26
+ It can directly generate 1024px, 2K and 4K images from text prompts within a single sampling process.
27
+
28
+ Source code is available at https://github.com/PixArt-alpha/PixArt-sigma.
29
+
30
+ ### Model Description
31
+
32
+ - **Developed by:** PixArt-Σ
33
+ - **Model type:** Diffusion-Transformer-based text-to-image generative model
34
+ - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
35
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
36
+ It is a [Transformer Latent Diffusion Model](https://arxiv.org/abs/2310.00426) that uses one fixed, pretrained text encoders ([T5](
37
+ https://huggingface.co/DeepFloyd/t5-v1_1-xxl))
38
+ and one latent feature encoder ([VAE](https://arxiv.org/abs/2112.10752)).
39
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/PixArt-alpha/PixArt-sigma) and the [PixArt-Σ report on arXiv](https://arxiv.org/abs/2403.04692).
40
+
41
+ ### Model Sources
42
+
43
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/PixArt-alpha/PixArt-sigma),
44
+ which is more suitable for both training and inference and for which most advanced diffusion sampler like [SA-Solver](https://arxiv.org/abs/2309.05019) will be added over time.
45
+ [Hugging Face](https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma) provides free PixArt-Σ inference.
46
+ - **Repository:** https://github.com/PixArt-alpha/PixArt-sigma
47
+ - **Demo:** https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma
48
+
49
+ ### 🧨 Diffusers
50
+ > [!IMPORTANT]
51
+ > Make sure to upgrade diffusers to >= 0.28.0:
52
+ > ```bash
53
+ > pip install -U diffusers --upgrade
54
+ > ```
55
+ > In addition make sure to install `transformers`, `safetensors`, `sentencepiece`, and `accelerate`:
56
+ > ```
57
+ > pip install transformers accelerate safetensors sentencepiece
58
+ > ```
59
+ > For `diffusers<0.28.0`, check this [script](https://github.com/PixArt-alpha/PixArt-sigma#2-integration-in-diffusers) for help.
60
+
61
+ To just use the base model, you can run:
62
+
63
+ ```python
64
+ import torch
65
+ from diffusers import Transformer2DModel, PixArtSigmaPipeline
66
+
67
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
68
+ weight_dtype = torch.float16
69
+
70
+ pipe = PixArtSigmaPipeline.from_pretrained(
71
+ "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
72
+ torch_dtype=weight_dtype,
73
+ use_safetensors=True,
74
+ )
75
+ pipe.to(device)
76
+
77
+ # Enable memory optimizations.
78
+ # pipe.enable_model_cpu_offload()
79
+
80
+ prompt = "A small cactus with a happy face in the Sahara desert."
81
+ image = pipe(prompt).images[0]
82
+ image.save("./catcus.png")
83
+ ```
84
+
85
+ When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
86
+ ```py
87
+ pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
88
+ ```
89
+
90
+ If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
91
+ instead of `.to("cuda")`:
92
+
93
+ ```diff
94
+ - pipe.to("cuda")
95
+ + pipe.enable_model_cpu_offload()
96
+ ```
97
+
98
+ For more information on how to use PixArt-Σ with `diffusers`, please have a look at [the PixArt-Σ Docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pixart_sigma.md).
99
+
100
+ ## Uses
101
+
102
+ ### Direct Use
103
+
104
+ The model is intended for research purposes only. Possible research areas and tasks include
105
+
106
+ - Generation of artworks and use in design and other artistic processes.
107
+ - Applications in educational or creative tools.
108
+ - Research on generative models.
109
+ - Safe deployment of models which have the potential to generate harmful content.
110
+
111
+ - Probing and understanding the limitations and biases of generative models.
112
+
113
+ Excluded uses are described below.
114
+
115
+ ### Out-of-Scope Use
116
+
117
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
118
+
119
+ ## Limitations and Bias
120
+
121
+ ### Limitations
122
+
123
+
124
+ - The model does not achieve perfect photorealism
125
+ - The model cannot render legible text
126
+ - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
127
+ - fingers, .etc in general may not be generated properly.
128
+ - The autoencoding part of the model is lossy.
129
+
130
+ ### Bias
131
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
asset/4K_image.jpg ADDED

Git LFS Details

  • SHA256: 88c9c5f61938f70598b92106efcd0b86ef22e8c3afb1700253fe8ba27862d903
  • Pointer size: 132 Bytes
  • Size of remote file: 3.98 MB
asset/logo-sigma.png ADDED
asset/model.png ADDED