PontifexMaximus
commited on
Commit
•
5a647e2
1
Parent(s):
e71fa31
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- id_panl_bppt
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: opus-mt-id-en-finetuned-id-to-en
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: id_panl_bppt
|
17 |
+
type: id_panl_bppt
|
18 |
+
config: id_panl_bppt
|
19 |
+
split: train
|
20 |
+
args: id_panl_bppt
|
21 |
+
metrics:
|
22 |
+
- name: Bleu
|
23 |
+
type: bleu
|
24 |
+
value: 30.557
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# opus-mt-id-en-finetuned-id-to-en
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-id-en](https://huggingface.co/Helsinki-NLP/opus-mt-id-en) on the id_panl_bppt dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.6469
|
35 |
+
- Bleu: 30.557
|
36 |
+
- Gen Len: 29.8247
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-06
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 30
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
68 |
+
| 2.5737 | 1.0 | 751 | 2.2222 | 24.4223 | 30.3344 |
|
69 |
+
| 2.3756 | 2.0 | 1502 | 2.1264 | 25.419 | 30.3147 |
|
70 |
+
| 2.3146 | 3.0 | 2253 | 2.0588 | 26.0995 | 30.1959 |
|
71 |
+
| 2.2411 | 4.0 | 3004 | 2.0072 | 26.5944 | 30.0763 |
|
72 |
+
| 2.1927 | 5.0 | 3755 | 1.9657 | 27.0422 | 30.0773 |
|
73 |
+
| 2.1554 | 6.0 | 4506 | 1.9284 | 27.4151 | 30.0715 |
|
74 |
+
| 2.1105 | 7.0 | 5257 | 1.8980 | 27.6645 | 29.9426 |
|
75 |
+
| 2.0841 | 8.0 | 6008 | 1.8680 | 28.023 | 29.9797 |
|
76 |
+
| 2.0491 | 9.0 | 6759 | 1.8438 | 28.2456 | 29.9342 |
|
77 |
+
| 2.0265 | 10.0 | 7510 | 1.8218 | 28.5378 | 29.8968 |
|
78 |
+
| 2.0065 | 11.0 | 8261 | 1.8012 | 28.7599 | 29.8907 |
|
79 |
+
| 1.9764 | 12.0 | 9012 | 1.7835 | 28.9369 | 29.8796 |
|
80 |
+
| 1.969 | 13.0 | 9763 | 1.7663 | 29.1565 | 29.8671 |
|
81 |
+
| 1.9474 | 14.0 | 10514 | 1.7506 | 29.3313 | 29.893 |
|
82 |
+
| 1.9397 | 15.0 | 11265 | 1.7378 | 29.4567 | 29.8512 |
|
83 |
+
| 1.9217 | 16.0 | 12016 | 1.7239 | 29.6245 | 29.8361 |
|
84 |
+
| 1.9174 | 17.0 | 12767 | 1.7127 | 29.7464 | 29.8398 |
|
85 |
+
| 1.9021 | 18.0 | 13518 | 1.7030 | 29.9035 | 29.8621 |
|
86 |
+
| 1.89 | 19.0 | 14269 | 1.6934 | 29.9669 | 29.8225 |
|
87 |
+
| 1.878 | 20.0 | 15020 | 1.6847 | 30.0961 | 29.8398 |
|
88 |
+
| 1.8671 | 21.0 | 15771 | 1.6774 | 30.1878 | 29.839 |
|
89 |
+
| 1.8634 | 22.0 | 16522 | 1.6717 | 30.2341 | 29.8134 |
|
90 |
+
| 1.8536 | 23.0 | 17273 | 1.6653 | 30.3356 | 29.816 |
|
91 |
+
| 1.8533 | 24.0 | 18024 | 1.6602 | 30.3548 | 29.8251 |
|
92 |
+
| 1.8476 | 25.0 | 18775 | 1.6560 | 30.4323 | 29.8315 |
|
93 |
+
| 1.8362 | 26.0 | 19526 | 1.6528 | 30.4682 | 29.8277 |
|
94 |
+
| 1.8463 | 27.0 | 20277 | 1.6501 | 30.5002 | 29.8236 |
|
95 |
+
| 1.8369 | 28.0 | 21028 | 1.6484 | 30.5236 | 29.8257 |
|
96 |
+
| 1.8313 | 29.0 | 21779 | 1.6472 | 30.55 | 29.8259 |
|
97 |
+
| 1.8332 | 30.0 | 22530 | 1.6469 | 30.557 | 29.8247 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.21.1
|
103 |
+
- Pytorch 1.12.0
|
104 |
+
- Datasets 2.4.0
|
105 |
+
- Tokenizers 0.12.1
|