Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
## Introduction
|
5 |
+
|
6 |
+
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
|
7 |
+
co-developed by the **IPADS and School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
|
8 |
+
Designed from the ground up for resource-constrained environments,
|
9 |
+
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
|
10 |
+
without relying on the cloud.
|
11 |
+
|
12 |
+
## Performance
|
13 |
+
|
14 |
+
|
15 |
+
For the MMLU evaluation, we use a 0-shot CoT setting.
|
16 |
+
|
17 |
+
## Model Card
|
18 |
+
|
19 |
+
<div align="center">
|
20 |
+
|
21 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
22 |
+
|:---:|:---:|
|
23 |
+
| **Total Parameters** | 21B |
|
24 |
+
| **Activated Parameters** | 3B |
|
25 |
+
| **Number of Layers** | 52 |
|
26 |
+
| **Attention Hidden Dimension** | 2560 |
|
27 |
+
| **MoE Hidden Dimension** (per Expert) | 768 |
|
28 |
+
| **Number of Attention Heads** | 28 |
|
29 |
+
| **Number of KV Heads** | 4 |
|
30 |
+
| **Number of Experts** | 64 |
|
31 |
+
| **Selected Experts per Token** | 6 |
|
32 |
+
| **Vocabulary Size** | 151,936 |
|
33 |
+
| **Context Length** | 16K |
|
34 |
+
| **Attention Mechanism** | GQA |
|
35 |
+
| **Activation Function** | ReGLU |
|
36 |
+
</div>
|
37 |
+
|
38 |
+
## How to Run
|
39 |
+
|
40 |
+
### Transformers
|
41 |
+
|
42 |
+
The latest version of `transformers` is recommended or `transformers>=4.53.3` is required.
|
43 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
47 |
+
import torch
|
48 |
+
|
49 |
+
path = "PowerInfer/SmallThinker-21BA3B-Instruct"
|
50 |
+
device = "cuda"
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
54 |
+
|
55 |
+
messages = [
|
56 |
+
{"role": "user", "content": "Give me a short introduction to large language model."},
|
57 |
+
]
|
58 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
59 |
+
|
60 |
+
model_outputs = model.generate(
|
61 |
+
model_inputs,
|
62 |
+
do_sample=True,
|
63 |
+
max_new_tokens=1024
|
64 |
+
)
|
65 |
+
|
66 |
+
output_token_ids = [
|
67 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
68 |
+
]
|
69 |
+
|
70 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
71 |
+
print(responses)
|
72 |
+
|
73 |
+
```
|
74 |
+
|
75 |
+
### ModelScope
|
76 |
+
|
77 |
+
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
|
78 |
+
|
79 |
+
```python
|
80 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
81 |
+
```
|