# coding=utf-8 from typing import List, Optional, Union, Callable, Tuple import torch import torch.nn.functional as F from torch import nn from transformers.cache_utils import Cache, HybridCache, StaticCache from transformers.generation import GenerationMixin from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import LossKwargs, can_return_tuple, logging from .configuration_smallthinker import SmallThinkerConfig logger = logging.get_logger(__name__) @torch.jit.script def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def check_is_swa_layer(config, layer_idx): """ Check if the current layer is a sliding window attention layer. """ if not hasattr(config, "sliding_window_layout"): return False elif config.sliding_window_layout is None: return False else: return config.sliding_window_layout[layer_idx] == 1 class SmallThinkerRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ SmallThinkerRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class SmallThinkerRotaryEmbedding(nn.Module): def __init__(self, config: SmallThinkerConfig, device=None): super().__init__() if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class SmallThinkerExpert(nn.Module): def __init__(self, config: SmallThinkerConfig): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.moe_ffn_hidden_size self.up = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.down = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) def forward(self, hidden_states: torch.Tensor): current_hidden_states = self.up(hidden_states) * F.relu(self.gate(hidden_states)) batch_size, _ = current_hidden_states.shape current_hidden_states = current_hidden_states.view(batch_size, -1) current_hidden_states = self.down(current_hidden_states) return current_hidden_states class SmallThinkerMoeBlock(nn.Module): def __init__(self, config: SmallThinkerConfig): super().__init__() self.hidden_dim = config.hidden_size self.num_primary_experts = config.moe_num_primary_experts self.moe_primary_router_apply_softmax = config.moe_primary_router_apply_softmax self.num_active_primary_experts = config.moe_num_active_primary_experts self.primary_router = nn.Linear(self.hidden_dim, self.num_primary_experts, bias=False) self.experts = nn.ModuleList([SmallThinkerExpert(config) for _ in range(self.num_primary_experts)]) def forward(self, router_input: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, sequence_length, hidden_dim = hidden_states.shape # Flatten the tokens into (bs * sl, hidden_dim) hidden_states = hidden_states.view(-1, hidden_dim) router_input = router_input.view(-1, hidden_dim) # Primary router logits: (bs * sl, n_experts) router_logits = self.primary_router(router_input) router_logits, selected_experts = torch.topk(router_logits, self.num_active_primary_experts, dim=-1) if self.moe_primary_router_apply_softmax: routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) else: routing_weights = F.sigmoid(router_logits) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) routing_weights = routing_weights.to(hidden_states.dtype) # Prepare the final tensor final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_primary_experts).permute(2, 1, 0) expert_hitted = (expert_mask.sum(dim=(-1, -2)) > 0).nonzero(as_tuple=True)[0].tolist() for expert_idx in expert_hitted: expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class SmallThinkerAttention(nn.Module): def __init__(self, config: SmallThinkerConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = config.head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) self.sliding_window = config.sliding_window_size if config.sliding_window_layout[layer_idx] else None def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if position_embeddings: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) else: cos, sin = None, None if past_key_value is not None: cache_kwargs = { "sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0, scaling=self.scaling, sliding_window=self.sliding_window, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class SmallThinkerDecoderLayer(nn.Module): def __init__(self, config: SmallThinkerConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = SmallThinkerAttention(config, layer_idx) self.block_sparse_moe = SmallThinkerMoeBlock(config) self.input_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.is_swa = check_is_swa_layer(config, layer_idx) if self.is_swa and config._attn_implementation == "sdpa": logger.warning_once( f"Sliding Window Attention is enabled but not optimized for `{config._attn_implementation}`; " "unexpected results may be encountered." ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states router_input = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.block_sparse_moe(router_input, hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if output_router_logits: outputs += (router_logits,) return outputs class SmallThinkerPreTrainedModel(PreTrainedModel): config_class = SmallThinkerConfig base_model_prefix = "model" supports_gradient_checkpointing = False _no_split_modules = ["SmallThinkerDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = False _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = False _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, SmallThinkerRMSNorm): module.weight.data.fill_(1.0) class SmallThinkerModel(SmallThinkerPreTrainedModel): def __init__(self, config: SmallThinkerConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [SmallThinkerDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = SmallThinkerRotaryEmbedding(config=config) self.gradient_checkpointing = False self.rope_layout = config.rope_layout self.config = config # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> MoeModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: batch_size, seq_len, _ = inputs_embeds.shape # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map` if not hasattr(self.config, "sliding_window_layout") or self.config.sliding_window_layout is None or not any(self.config.sliding_window_layout): past_key_values = StaticCache( self.config, max_batch_size=batch_size, max_cache_len=seq_len, dtype=inputs_embeds.dtype, device=self.device, ) else: past_key_values = HybridCache( self.config, max_batch_size=batch_size, max_cache_len=seq_len, dtype=inputs_embeds.dtype, device=self.device, ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None and any(self.config.sliding_window_layout): swa_mask = create_sliding_window_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for layer_idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None: if self.config.sliding_window_layout[layer_idx] == 1: layer_outputs = decoder_layer( hidden_states, attention_mask=swa_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None, **flash_attn_kwargs, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None, **flash_attn_kwargs, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class SmallThinkerForCausalLM(SmallThinkerPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = SmallThinkerModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> MoeCausalLMOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) return MoeCausalLMOutputWithPast( loss=None, aux_loss=None, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) __all__ = [ "SmallThinkerForCausalLM", "SmallThinkerModel", "SmallThinkerPreTrainedModel" ]