File size: 1,105 Bytes
c478819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from typing import Tuple 
device = "cuda:0" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert").to(device)
labels = ["positive", "negative", "neutral"]

def estimate_sentiment(news):
    if news:
        tokens = tokenizer(news, return_tensors="pt", padding=True).to(device)

        result = model(tokens["input_ids"], attention_mask=tokens["attention_mask"])[
            "logits"
        ]
        result = torch.nn.functional.softmax(torch.sum(result, 0), dim=-1)
        probability = result[torch.argmax(result)]
        sentiment = labels[torch.argmax(result)]
        return probability, sentiment
    else:
        return 0, labels[-1]


if __name__ == "__main__":
    tensor, sentiment = estimate_sentiment(['markets responded negatively to the news!','traders were displeased!'])
    print(tensor, sentiment)
    print(torch.cuda.is_available())