--- language: - ko datasets: - kyujinpy/Ko-various-dataset library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **⭐My custom LLM 13B⭐** ## Model Details **Model Developers** - Kyujin Han (kyujinpy) **Model Architecture** - My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Base Model** - [beomi/llama-2-koen-13b](https://huggingface.co/beomi/llama-2-koen-13b) **Training Dataset** - [kyujinpy/Ko-various-dataset](https://huggingface.co/datasets/kyujinpy/Ko-various-dataset). --- # Model comparisons > Ko-LLM leaderboard(11/27; [link](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)) | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | ⭐My custom LLM 13B-v1⭐ | 50.19 | 45.99 | 56.93 | 41.78 | 41.66 | **64.58** | | ⭐My custom LLM 13B v2⭐ | 48.28 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 | | ⭐My custom LLM 13B v3⭐ | NaN | NaN | NaN | NaN | NaN | NaN | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "PracticeLLM/Custom-KoLLM-13B-v3" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---