File size: 1,724 Bytes
ee291b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5416bb
 
 
ee291b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb133f3
2086847
9b6d474
c84ae7b
91fbdf6
7470ca4
9e38c2d
37434fa
6746ff6
f5416bb
ee291b6
 
 
 
326b30b
ee291b6
bb133f3
326b30b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_keras_callback
model-index:
- name: Prahith/my_awesome_eli5_mlm_model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Prahith/my_awesome_eli5_mlm_model

This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8639
- Validation Loss: 0.7876
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.7024     | 1.3578          | 0     |
| 1.3743     | 1.2240          | 1     |
| 1.2305     | 1.1160          | 2     |
| 1.1437     | 1.0130          | 3     |
| 1.0858     | 0.9542          | 4     |
| 0.9998     | 0.9088          | 5     |
| 0.9549     | 0.8946          | 6     |
| 0.9404     | 0.8457          | 7     |
| 0.9150     | 0.8061          | 8     |
| 0.8639     | 0.7876          | 9     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0