Max Meyer
commited on
Update model.py
Browse files
model.py
CHANGED
@@ -0,0 +1,950 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.utils.checkpoint as checkpoint
|
7 |
+
from einops import rearrange
|
8 |
+
from PIL import Image, ImageFilter, ImageOps
|
9 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
10 |
+
from torchvision import transforms
|
11 |
+
|
12 |
+
class Mlp(nn.Module):
|
13 |
+
""" Multilayer perceptron."""
|
14 |
+
|
15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
+
super().__init__()
|
17 |
+
out_features = out_features or in_features
|
18 |
+
hidden_features = hidden_features or in_features
|
19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
+
self.act = act_layer()
|
21 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
22 |
+
self.drop = nn.Dropout(drop)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
x = self.fc1(x)
|
26 |
+
x = self.act(x)
|
27 |
+
x = self.drop(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
x = self.drop(x)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def window_partition(x, window_size):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
x: (B, H, W, C)
|
37 |
+
window_size (int): window size
|
38 |
+
Returns:
|
39 |
+
windows: (num_windows*B, window_size, window_size, C)
|
40 |
+
"""
|
41 |
+
B, H, W, C = x.shape
|
42 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
43 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
44 |
+
return windows
|
45 |
+
|
46 |
+
|
47 |
+
def window_reverse(windows, window_size, H, W):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
windows: (num_windows*B, window_size, window_size, C)
|
51 |
+
window_size (int): Window size
|
52 |
+
H (int): Height of image
|
53 |
+
W (int): Width of image
|
54 |
+
Returns:
|
55 |
+
x: (B, H, W, C)
|
56 |
+
"""
|
57 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
58 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
59 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
class WindowAttention(nn.Module):
|
64 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
65 |
+
It supports both of shifted and non-shifted window.
|
66 |
+
Args:
|
67 |
+
dim (int): Number of input channels.
|
68 |
+
window_size (tuple[int]): The height and width of the window.
|
69 |
+
num_heads (int): Number of attention heads.
|
70 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
71 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
72 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
73 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
77 |
+
|
78 |
+
super().__init__()
|
79 |
+
self.dim = dim
|
80 |
+
self.window_size = window_size # Wh, Ww
|
81 |
+
self.num_heads = num_heads
|
82 |
+
head_dim = dim // num_heads
|
83 |
+
self.scale = qk_scale or head_dim ** -0.5
|
84 |
+
|
85 |
+
# define a parameter table of relative position bias
|
86 |
+
self.relative_position_bias_table = nn.Parameter(
|
87 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
88 |
+
|
89 |
+
# get pair-wise relative position index for each token inside the window
|
90 |
+
coords_h = torch.arange(self.window_size[0])
|
91 |
+
coords_w = torch.arange(self.window_size[1])
|
92 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
93 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
94 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
95 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
96 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
97 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
98 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
99 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
100 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
101 |
+
|
102 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
103 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
104 |
+
self.proj = nn.Linear(dim, dim)
|
105 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
106 |
+
|
107 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
108 |
+
self.softmax = nn.Softmax(dim=-1)
|
109 |
+
|
110 |
+
def forward(self, x, mask=None):
|
111 |
+
""" Forward function.
|
112 |
+
Args:
|
113 |
+
x: input features with shape of (num_windows*B, N, C)
|
114 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
115 |
+
"""
|
116 |
+
B_, N, C = x.shape
|
117 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
118 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
119 |
+
|
120 |
+
q = q * self.scale
|
121 |
+
attn = (q @ k.transpose(-2, -1))
|
122 |
+
|
123 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
124 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
125 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
126 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
127 |
+
|
128 |
+
if mask is not None:
|
129 |
+
nW = mask.shape[0]
|
130 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
131 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
132 |
+
attn = self.softmax(attn)
|
133 |
+
else:
|
134 |
+
attn = self.softmax(attn)
|
135 |
+
|
136 |
+
attn = self.attn_drop(attn)
|
137 |
+
|
138 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
139 |
+
x = self.proj(x)
|
140 |
+
x = self.proj_drop(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
class SwinTransformerBlock(nn.Module):
|
145 |
+
""" Swin Transformer Block.
|
146 |
+
Args:
|
147 |
+
dim (int): Number of input channels.
|
148 |
+
num_heads (int): Number of attention heads.
|
149 |
+
window_size (int): Window size.
|
150 |
+
shift_size (int): Shift size for SW-MSA.
|
151 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
152 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
153 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
154 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
155 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
156 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
157 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
158 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
162 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
163 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
164 |
+
super().__init__()
|
165 |
+
self.dim = dim
|
166 |
+
self.num_heads = num_heads
|
167 |
+
self.window_size = window_size
|
168 |
+
self.shift_size = shift_size
|
169 |
+
self.mlp_ratio = mlp_ratio
|
170 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
171 |
+
|
172 |
+
self.norm1 = norm_layer(dim)
|
173 |
+
self.attn = WindowAttention(
|
174 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
175 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
176 |
+
|
177 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
178 |
+
self.norm2 = norm_layer(dim)
|
179 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
180 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
181 |
+
|
182 |
+
self.H = None
|
183 |
+
self.W = None
|
184 |
+
|
185 |
+
def forward(self, x, mask_matrix):
|
186 |
+
""" Forward function.
|
187 |
+
Args:
|
188 |
+
x: Input feature, tensor size (B, H*W, C).
|
189 |
+
H, W: Spatial resolution of the input feature.
|
190 |
+
mask_matrix: Attention mask for cyclic shift.
|
191 |
+
"""
|
192 |
+
B, L, C = x.shape
|
193 |
+
H, W = self.H, self.W
|
194 |
+
assert L == H * W, "input feature has wrong size"
|
195 |
+
|
196 |
+
shortcut = x
|
197 |
+
x = self.norm1(x)
|
198 |
+
x = x.view(B, H, W, C)
|
199 |
+
|
200 |
+
# pad feature maps to multiples of window size
|
201 |
+
pad_l = pad_t = 0
|
202 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
203 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
204 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
205 |
+
_, Hp, Wp, _ = x.shape
|
206 |
+
|
207 |
+
# cyclic shift
|
208 |
+
if self.shift_size > 0:
|
209 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
210 |
+
attn_mask = mask_matrix
|
211 |
+
else:
|
212 |
+
shifted_x = x
|
213 |
+
attn_mask = None
|
214 |
+
|
215 |
+
# partition windows
|
216 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
217 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
218 |
+
|
219 |
+
# W-MSA/SW-MSA
|
220 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
221 |
+
|
222 |
+
# merge windows
|
223 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
224 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
225 |
+
|
226 |
+
# reverse cyclic shift
|
227 |
+
if self.shift_size > 0:
|
228 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
229 |
+
else:
|
230 |
+
x = shifted_x
|
231 |
+
|
232 |
+
if pad_r > 0 or pad_b > 0:
|
233 |
+
x = x[:, :H, :W, :].contiguous()
|
234 |
+
|
235 |
+
x = x.view(B, H * W, C)
|
236 |
+
|
237 |
+
# FFN
|
238 |
+
x = shortcut + self.drop_path(x)
|
239 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
240 |
+
|
241 |
+
return x
|
242 |
+
|
243 |
+
|
244 |
+
class PatchMerging(nn.Module):
|
245 |
+
""" Patch Merging Layer
|
246 |
+
Args:
|
247 |
+
dim (int): Number of input channels.
|
248 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
249 |
+
"""
|
250 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
251 |
+
super().__init__()
|
252 |
+
self.dim = dim
|
253 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
254 |
+
self.norm = norm_layer(4 * dim)
|
255 |
+
|
256 |
+
def forward(self, x, H, W):
|
257 |
+
""" Forward function.
|
258 |
+
Args:
|
259 |
+
x: Input feature, tensor size (B, H*W, C).
|
260 |
+
H, W: Spatial resolution of the input feature.
|
261 |
+
"""
|
262 |
+
B, L, C = x.shape
|
263 |
+
assert L == H * W, "input feature has wrong size"
|
264 |
+
|
265 |
+
x = x.view(B, H, W, C)
|
266 |
+
|
267 |
+
# padding
|
268 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
269 |
+
if pad_input:
|
270 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
271 |
+
|
272 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
273 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
274 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
275 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
276 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
277 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
278 |
+
|
279 |
+
x = self.norm(x)
|
280 |
+
x = self.reduction(x)
|
281 |
+
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
class BasicLayer(nn.Module):
|
286 |
+
""" A basic Swin Transformer layer for one stage.
|
287 |
+
Args:
|
288 |
+
dim (int): Number of feature channels
|
289 |
+
depth (int): Depths of this stage.
|
290 |
+
num_heads (int): Number of attention head.
|
291 |
+
window_size (int): Local window size. Default: 7.
|
292 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
293 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
294 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
295 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
296 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
297 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
298 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
299 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
300 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self,
|
304 |
+
dim,
|
305 |
+
depth,
|
306 |
+
num_heads,
|
307 |
+
window_size=7,
|
308 |
+
mlp_ratio=4.,
|
309 |
+
qkv_bias=True,
|
310 |
+
qk_scale=None,
|
311 |
+
drop=0.,
|
312 |
+
attn_drop=0.,
|
313 |
+
drop_path=0.,
|
314 |
+
norm_layer=nn.LayerNorm,
|
315 |
+
downsample=None,
|
316 |
+
use_checkpoint=False):
|
317 |
+
super().__init__()
|
318 |
+
self.window_size = window_size
|
319 |
+
self.shift_size = window_size // 2
|
320 |
+
self.depth = depth
|
321 |
+
self.use_checkpoint = use_checkpoint
|
322 |
+
|
323 |
+
# build blocks
|
324 |
+
self.blocks = nn.ModuleList([
|
325 |
+
SwinTransformerBlock(
|
326 |
+
dim=dim,
|
327 |
+
num_heads=num_heads,
|
328 |
+
window_size=window_size,
|
329 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
330 |
+
mlp_ratio=mlp_ratio,
|
331 |
+
qkv_bias=qkv_bias,
|
332 |
+
qk_scale=qk_scale,
|
333 |
+
drop=drop,
|
334 |
+
attn_drop=attn_drop,
|
335 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
336 |
+
norm_layer=norm_layer)
|
337 |
+
for i in range(depth)])
|
338 |
+
|
339 |
+
# patch merging layer
|
340 |
+
if downsample is not None:
|
341 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
342 |
+
else:
|
343 |
+
self.downsample = None
|
344 |
+
|
345 |
+
def forward(self, x, H, W):
|
346 |
+
""" Forward function.
|
347 |
+
Args:
|
348 |
+
x: Input feature, tensor size (B, H*W, C).
|
349 |
+
H, W: Spatial resolution of the input feature.
|
350 |
+
"""
|
351 |
+
|
352 |
+
# calculate attention mask for SW-MSA
|
353 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
354 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
355 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
356 |
+
h_slices = (slice(0, -self.window_size),
|
357 |
+
slice(-self.window_size, -self.shift_size),
|
358 |
+
slice(-self.shift_size, None))
|
359 |
+
w_slices = (slice(0, -self.window_size),
|
360 |
+
slice(-self.window_size, -self.shift_size),
|
361 |
+
slice(-self.shift_size, None))
|
362 |
+
cnt = 0
|
363 |
+
for h in h_slices:
|
364 |
+
for w in w_slices:
|
365 |
+
img_mask[:, h, w, :] = cnt
|
366 |
+
cnt += 1
|
367 |
+
|
368 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
369 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
370 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
371 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
372 |
+
|
373 |
+
for blk in self.blocks:
|
374 |
+
blk.H, blk.W = H, W
|
375 |
+
if self.use_checkpoint:
|
376 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
377 |
+
else:
|
378 |
+
x = blk(x, attn_mask)
|
379 |
+
if self.downsample is not None:
|
380 |
+
x_down = self.downsample(x, H, W)
|
381 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
382 |
+
return x, H, W, x_down, Wh, Ww
|
383 |
+
else:
|
384 |
+
return x, H, W, x, H, W
|
385 |
+
|
386 |
+
|
387 |
+
class PatchEmbed(nn.Module):
|
388 |
+
""" Image to Patch Embedding
|
389 |
+
Args:
|
390 |
+
patch_size (int): Patch token size. Default: 4.
|
391 |
+
in_chans (int): Number of input image channels. Default: 3.
|
392 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
393 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
397 |
+
super().__init__()
|
398 |
+
patch_size = to_2tuple(patch_size)
|
399 |
+
self.patch_size = patch_size
|
400 |
+
|
401 |
+
self.in_chans = in_chans
|
402 |
+
self.embed_dim = embed_dim
|
403 |
+
|
404 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
405 |
+
if norm_layer is not None:
|
406 |
+
self.norm = norm_layer(embed_dim)
|
407 |
+
else:
|
408 |
+
self.norm = None
|
409 |
+
|
410 |
+
def forward(self, x):
|
411 |
+
"""Forward function."""
|
412 |
+
# padding
|
413 |
+
_, _, H, W = x.size()
|
414 |
+
if W % self.patch_size[1] != 0:
|
415 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
416 |
+
if H % self.patch_size[0] != 0:
|
417 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
418 |
+
|
419 |
+
x = self.proj(x) # B C Wh Ww
|
420 |
+
if self.norm is not None:
|
421 |
+
Wh, Ww = x.size(2), x.size(3)
|
422 |
+
x = x.flatten(2).transpose(1, 2)
|
423 |
+
x = self.norm(x)
|
424 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
425 |
+
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class SwinTransformer(nn.Module):
|
430 |
+
""" Swin Transformer backbone.
|
431 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
432 |
+
https://arxiv.org/pdf/2103.14030
|
433 |
+
Args:
|
434 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
435 |
+
used in absolute postion embedding. Default 224.
|
436 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
437 |
+
in_chans (int): Number of input image channels. Default: 3.
|
438 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
439 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
440 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
441 |
+
window_size (int): Window size. Default: 7.
|
442 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
443 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
444 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
445 |
+
drop_rate (float): Dropout rate.
|
446 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
447 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
448 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
449 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
450 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
451 |
+
out_indices (Sequence[int]): Output from which stages.
|
452 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
453 |
+
-1 means not freezing any parameters.
|
454 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self,
|
458 |
+
pretrain_img_size=224,
|
459 |
+
patch_size=4,
|
460 |
+
in_chans=3,
|
461 |
+
embed_dim=96,
|
462 |
+
depths=[2, 2, 6, 2],
|
463 |
+
num_heads=[3, 6, 12, 24],
|
464 |
+
window_size=7,
|
465 |
+
mlp_ratio=4.,
|
466 |
+
qkv_bias=True,
|
467 |
+
qk_scale=None,
|
468 |
+
drop_rate=0.,
|
469 |
+
attn_drop_rate=0.,
|
470 |
+
drop_path_rate=0.2,
|
471 |
+
norm_layer=nn.LayerNorm,
|
472 |
+
ape=False,
|
473 |
+
patch_norm=True,
|
474 |
+
out_indices=(0, 1, 2, 3),
|
475 |
+
frozen_stages=-1,
|
476 |
+
use_checkpoint=False):
|
477 |
+
super().__init__()
|
478 |
+
|
479 |
+
self.pretrain_img_size = pretrain_img_size
|
480 |
+
self.num_layers = len(depths)
|
481 |
+
self.embed_dim = embed_dim
|
482 |
+
self.ape = ape
|
483 |
+
self.patch_norm = patch_norm
|
484 |
+
self.out_indices = out_indices
|
485 |
+
self.frozen_stages = frozen_stages
|
486 |
+
|
487 |
+
# split image into non-overlapping patches
|
488 |
+
self.patch_embed = PatchEmbed(
|
489 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
490 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
491 |
+
|
492 |
+
# absolute position embedding
|
493 |
+
if self.ape:
|
494 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
495 |
+
patch_size = to_2tuple(patch_size)
|
496 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
497 |
+
|
498 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
499 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
500 |
+
|
501 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
502 |
+
|
503 |
+
# stochastic depth
|
504 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
505 |
+
|
506 |
+
# build layers
|
507 |
+
self.layers = nn.ModuleList()
|
508 |
+
for i_layer in range(self.num_layers):
|
509 |
+
layer = BasicLayer(
|
510 |
+
dim=int(embed_dim * 2 ** i_layer),
|
511 |
+
depth=depths[i_layer],
|
512 |
+
num_heads=num_heads[i_layer],
|
513 |
+
window_size=window_size,
|
514 |
+
mlp_ratio=mlp_ratio,
|
515 |
+
qkv_bias=qkv_bias,
|
516 |
+
qk_scale=qk_scale,
|
517 |
+
drop=drop_rate,
|
518 |
+
attn_drop=attn_drop_rate,
|
519 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
520 |
+
norm_layer=norm_layer,
|
521 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
522 |
+
use_checkpoint=use_checkpoint)
|
523 |
+
self.layers.append(layer)
|
524 |
+
|
525 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
526 |
+
self.num_features = num_features
|
527 |
+
|
528 |
+
# add a norm layer for each output
|
529 |
+
for i_layer in out_indices:
|
530 |
+
layer = norm_layer(num_features[i_layer])
|
531 |
+
layer_name = f'norm{i_layer}'
|
532 |
+
self.add_module(layer_name, layer)
|
533 |
+
|
534 |
+
self._freeze_stages()
|
535 |
+
|
536 |
+
def _freeze_stages(self):
|
537 |
+
if self.frozen_stages >= 0:
|
538 |
+
self.patch_embed.eval()
|
539 |
+
for param in self.patch_embed.parameters():
|
540 |
+
param.requires_grad = False
|
541 |
+
|
542 |
+
if self.frozen_stages >= 1 and self.ape:
|
543 |
+
self.absolute_pos_embed.requires_grad = False
|
544 |
+
|
545 |
+
if self.frozen_stages >= 2:
|
546 |
+
self.pos_drop.eval()
|
547 |
+
for i in range(0, self.frozen_stages - 1):
|
548 |
+
m = self.layers[i]
|
549 |
+
m.eval()
|
550 |
+
for param in m.parameters():
|
551 |
+
param.requires_grad = False
|
552 |
+
|
553 |
+
|
554 |
+
def forward(self, x):
|
555 |
+
|
556 |
+
x = self.patch_embed(x)
|
557 |
+
|
558 |
+
Wh, Ww = x.size(2), x.size(3)
|
559 |
+
if self.ape:
|
560 |
+
# interpolate the position embedding to the corresponding size
|
561 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
562 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
563 |
+
|
564 |
+
outs = [x.contiguous()]
|
565 |
+
x = x.flatten(2).transpose(1, 2)
|
566 |
+
x = self.pos_drop(x)
|
567 |
+
|
568 |
+
|
569 |
+
for i in range(self.num_layers):
|
570 |
+
layer = self.layers[i]
|
571 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
572 |
+
|
573 |
+
|
574 |
+
if i in self.out_indices:
|
575 |
+
norm_layer = getattr(self, f'norm{i}')
|
576 |
+
x_out = norm_layer(x_out)
|
577 |
+
|
578 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
579 |
+
outs.append(out)
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
return tuple(outs)
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
def get_activation_fn(activation):
|
592 |
+
"""Return an activation function given a string"""
|
593 |
+
if activation == "gelu":
|
594 |
+
return F.gelu
|
595 |
+
|
596 |
+
raise RuntimeError(F"activation should be gelu, not {activation}.")
|
597 |
+
|
598 |
+
|
599 |
+
def make_cbr(in_dim, out_dim):
|
600 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
|
601 |
+
|
602 |
+
|
603 |
+
def make_cbg(in_dim, out_dim):
|
604 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
|
605 |
+
|
606 |
+
|
607 |
+
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
|
608 |
+
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
|
609 |
+
|
610 |
+
|
611 |
+
def resize_as(x, y, interpolation='bilinear'):
|
612 |
+
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
|
613 |
+
|
614 |
+
|
615 |
+
def image2patches(x):
|
616 |
+
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
|
617 |
+
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
618 |
+
return x
|
619 |
+
|
620 |
+
|
621 |
+
def patches2image(x):
|
622 |
+
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
|
623 |
+
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
624 |
+
return x
|
625 |
+
class PositionEmbeddingSine:
|
626 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
627 |
+
super().__init__()
|
628 |
+
self.num_pos_feats = num_pos_feats
|
629 |
+
self.temperature = temperature
|
630 |
+
self.normalize = normalize
|
631 |
+
if scale is not None and normalize is False:
|
632 |
+
raise ValueError("normalize should be True if scale is passed")
|
633 |
+
if scale is None:
|
634 |
+
scale = 2 * math.pi
|
635 |
+
self.scale = scale
|
636 |
+
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
|
637 |
+
|
638 |
+
def __call__(self, b, h, w):
|
639 |
+
device = self.dim_t.device
|
640 |
+
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
|
641 |
+
assert mask is not None
|
642 |
+
not_mask = ~mask
|
643 |
+
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
|
644 |
+
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
|
645 |
+
if self.normalize:
|
646 |
+
eps = 1e-6
|
647 |
+
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
648 |
+
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
649 |
+
|
650 |
+
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
|
651 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
652 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
653 |
+
|
654 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
655 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
656 |
+
|
657 |
+
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
658 |
+
|
659 |
+
|
660 |
+
class MCLM(nn.Module):
|
661 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
662 |
+
super(MCLM, self).__init__()
|
663 |
+
self.attention = nn.ModuleList([
|
664 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
665 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
666 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
667 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
668 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
669 |
+
])
|
670 |
+
|
671 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
672 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
673 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
674 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
675 |
+
self.norm1 = nn.LayerNorm(d_model)
|
676 |
+
self.norm2 = nn.LayerNorm(d_model)
|
677 |
+
self.dropout = nn.Dropout(0.1)
|
678 |
+
self.dropout1 = nn.Dropout(0.1)
|
679 |
+
self.dropout2 = nn.Dropout(0.1)
|
680 |
+
self.activation = get_activation_fn('gelu')
|
681 |
+
self.pool_ratios = pool_ratios
|
682 |
+
self.p_poses = []
|
683 |
+
self.g_pos = None
|
684 |
+
self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True)
|
685 |
+
|
686 |
+
def forward(self, l, g):
|
687 |
+
"""
|
688 |
+
l: 4,c,h,w
|
689 |
+
g: 1,c,h,w
|
690 |
+
"""
|
691 |
+
b, c, h, w = l.size()
|
692 |
+
# 4,c,h,w -> 1,c,2h,2w
|
693 |
+
concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
694 |
+
|
695 |
+
pools = []
|
696 |
+
for pool_ratio in self.pool_ratios:
|
697 |
+
# b,c,h,w
|
698 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
699 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
700 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
701 |
+
if self.g_pos is None:
|
702 |
+
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3])
|
703 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
704 |
+
self.p_poses.append(pos_emb)
|
705 |
+
pools = torch.cat(pools, 0)
|
706 |
+
if self.g_pos is None:
|
707 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
708 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
|
709 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
710 |
+
|
711 |
+
device = pools.device
|
712 |
+
self.p_poses = self.p_poses.to(device)
|
713 |
+
self.g_pos = self.g_pos.to(device)
|
714 |
+
|
715 |
+
|
716 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
717 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
718 |
+
|
719 |
+
|
720 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
721 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
722 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
723 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
724 |
+
|
725 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
726 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
727 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
728 |
+
_g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2)
|
729 |
+
outputs_re = []
|
730 |
+
for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
731 |
+
outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) # (h w) 1 c
|
732 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
733 |
+
|
734 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
735 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
736 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
737 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
738 |
+
|
739 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
740 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
|
745 |
+
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
class MCRM(nn.Module):
|
751 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
752 |
+
super(MCRM, self).__init__()
|
753 |
+
self.attention = nn.ModuleList([
|
754 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
755 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
756 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
757 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
758 |
+
])
|
759 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
760 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
761 |
+
self.norm1 = nn.LayerNorm(d_model)
|
762 |
+
self.norm2 = nn.LayerNorm(d_model)
|
763 |
+
self.dropout = nn.Dropout(0.1)
|
764 |
+
self.dropout1 = nn.Dropout(0.1)
|
765 |
+
self.dropout2 = nn.Dropout(0.1)
|
766 |
+
self.sigmoid = nn.Sigmoid()
|
767 |
+
self.activation = get_activation_fn('gelu')
|
768 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
769 |
+
self.pool_ratios = pool_ratios
|
770 |
+
|
771 |
+
def forward(self, x):
|
772 |
+
device = x.device
|
773 |
+
b, c, h, w = x.size()
|
774 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
775 |
+
|
776 |
+
patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
777 |
+
|
778 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
779 |
+
token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest')
|
780 |
+
loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
781 |
+
|
782 |
+
pools = []
|
783 |
+
for pool_ratio in self.pool_ratios:
|
784 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
785 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
786 |
+
pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
787 |
+
|
788 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
789 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
790 |
+
|
791 |
+
outputs = []
|
792 |
+
for i, q in enumerate(loc_.unbind(dim=0)): # traverse all local patches
|
793 |
+
v = pools[i]
|
794 |
+
k = v
|
795 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
796 |
+
|
797 |
+
outputs = torch.cat(outputs, 1)
|
798 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
799 |
+
src = self.norm1(src)
|
800 |
+
src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone())))
|
801 |
+
src = self.norm2(src)
|
802 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
803 |
+
glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') # freshed glb
|
804 |
+
|
805 |
+
return torch.cat((src, glb), 0), token_attention_map
|
806 |
+
|
807 |
+
|
808 |
+
class BEN_Base(nn.Module):
|
809 |
+
def __init__(self):
|
810 |
+
super().__init__()
|
811 |
+
|
812 |
+
self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
813 |
+
emb_dim = 128
|
814 |
+
self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
815 |
+
self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
816 |
+
self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
817 |
+
self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
818 |
+
self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
819 |
+
|
820 |
+
self.output5 = make_cbr(1024, emb_dim)
|
821 |
+
self.output4 = make_cbr(512, emb_dim)
|
822 |
+
self.output3 = make_cbr(256, emb_dim)
|
823 |
+
self.output2 = make_cbr(128, emb_dim)
|
824 |
+
self.output1 = make_cbr(128, emb_dim)
|
825 |
+
|
826 |
+
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
|
827 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
828 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
829 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
830 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
831 |
+
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
|
832 |
+
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
|
833 |
+
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
|
834 |
+
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
|
835 |
+
|
836 |
+
self.insmask_head = nn.Sequential(
|
837 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
838 |
+
nn.InstanceNorm2d(384),
|
839 |
+
nn.GELU(),
|
840 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1),
|
841 |
+
nn.InstanceNorm2d(384),
|
842 |
+
nn.GELU(),
|
843 |
+
nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)
|
844 |
+
)
|
845 |
+
|
846 |
+
self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
847 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
848 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
849 |
+
self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
850 |
+
|
851 |
+
for m in self.modules():
|
852 |
+
if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout):
|
853 |
+
m.inplace = True
|
854 |
+
|
855 |
+
def forward(self, x):
|
856 |
+
device = x.device
|
857 |
+
shallow = self.shallow(x)
|
858 |
+
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
859 |
+
loc = image2patches(x)
|
860 |
+
input = torch.cat((loc, glb), dim=0)
|
861 |
+
feature = self.backbone(input)
|
862 |
+
e5 = self.output5(feature[4]) # (5,128,16,16)
|
863 |
+
e4 = self.output4(feature[3]) # (5,128,32,32)
|
864 |
+
e3 = self.output3(feature[2]) # (5,128,64,64)
|
865 |
+
e2 = self.output2(feature[1]) # (5,128,128,128)
|
866 |
+
e1 = self.output1(feature[0]) # (5,128,128,128)
|
867 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
868 |
+
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
|
869 |
+
|
870 |
+
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
|
871 |
+
e4 = self.conv4(e4)
|
872 |
+
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
|
873 |
+
e3 = self.conv3(e3)
|
874 |
+
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
|
875 |
+
e2 = self.conv2(e2)
|
876 |
+
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
|
877 |
+
e1 = self.conv1(e1)
|
878 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
879 |
+
output1_cat = patches2image(loc_e1) # (1,128,256,256)
|
880 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
881 |
+
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
|
882 |
+
final_output = final_output + resize_as(shallow, final_output)
|
883 |
+
final_output = self.upsample1(rescale_to(final_output))
|
884 |
+
final_output = rescale_to(final_output + resize_as(shallow, final_output))
|
885 |
+
final_output = self.upsample2(final_output)
|
886 |
+
final_output = self.output(final_output)
|
887 |
+
|
888 |
+
return final_output.sigmoid()
|
889 |
+
|
890 |
+
def inference(self,image):
|
891 |
+
image, h, w,original_image = rgb_loader_refiner(image)
|
892 |
+
|
893 |
+
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
|
894 |
+
|
895 |
+
res = self.forward(img_tensor)
|
896 |
+
|
897 |
+
pred_array = postprocess_image(res, im_size=[w, h])
|
898 |
+
|
899 |
+
mask_image = Image.fromarray(pred_array, mode='L')
|
900 |
+
|
901 |
+
blurred_mask = mask_image.filter(ImageFilter.GaussianBlur(radius=1))
|
902 |
+
|
903 |
+
original_image_rgba = original_image.convert("RGBA")
|
904 |
+
|
905 |
+
foreground = original_image_rgba.copy()
|
906 |
+
|
907 |
+
foreground.putalpha(blurred_mask)
|
908 |
+
|
909 |
+
return blurred_mask, foreground
|
910 |
+
|
911 |
+
def loadcheckpoints(self,model_path):
|
912 |
+
model_dict = torch.load(model_path,map_location="cpu")
|
913 |
+
self.load_state_dict(model_dict['model_state_dict'], strict=True)
|
914 |
+
del model_path
|
915 |
+
|
916 |
+
|
917 |
+
|
918 |
+
|
919 |
+
def rgb_loader_refiner( original_image):
|
920 |
+
h, w = original_image.size
|
921 |
+
# # Apply EXIF orientation
|
922 |
+
image = ImageOps.exif_transpose(original_image)
|
923 |
+
# Convert to RGB if necessary
|
924 |
+
if image.mode != 'RGB':
|
925 |
+
image = image.convert('RGB')
|
926 |
+
|
927 |
+
# Resize the image
|
928 |
+
image = image.resize((1024, 1024), resample=Image.LANCZOS)
|
929 |
+
|
930 |
+
return image.convert('RGB'), h, w,original_image
|
931 |
+
|
932 |
+
# Define the image transformation
|
933 |
+
img_transform = transforms.Compose([
|
934 |
+
transforms.ToTensor(),
|
935 |
+
transforms.ConvertImageDtype(torch.float32),
|
936 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
937 |
+
])
|
938 |
+
|
939 |
+
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
|
940 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
|
941 |
+
ma = torch.max(result)
|
942 |
+
mi = torch.min(result)
|
943 |
+
result = (result - mi) / (ma - mi)
|
944 |
+
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
945 |
+
im_array = np.squeeze(im_array)
|
946 |
+
return im_array
|
947 |
+
|
948 |
+
|
949 |
+
|
950 |
+
|