--- license: apache-2.0 --- # BEN - Background Erase Network BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image. # BEN SOA Benchmarks on Disk 5k Eval BEN_Base + BEN_Refiner (commerical model please contanct us for more information): MAE-0.0283 DICE-0.8976 IOU-0.8430 BER-0.0542 ACC-0.9725 BEN_Base: MAE-0.0331 DICE-0.8743 IOU-0.8301 BER-0.0560 ACC-0.9700 MVANet (old SOA): MAE-0.0353 DICE-0.8676 IOU-0.8104 BER-0.0639 ACC-0.9660 ## Features - Background removal from images - Generates both binary mask and foreground image - CUDA support for GPU acceleration - Simple API for easy integration ## Installation - Clone Repo - Install requirements.txt ## Quick Start Code from BEN import BEN_Base from PIL import Image import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = BEN_Base().to(device).eval() model.loadcheckpoints("./BEN/BEN_Base.pth") image = Image.open("./image2.jpg") mask, foreground = model.inference(image) mask.save("./mask.png") foreground.save("./foreground.png")