--- base_model: - ProbeMedicalYonseiMAILab/medllama3-v20 - skumar9/Llama-medx_v3.2 tags: - merge - mergekit - lazymergekit - ProbeMedicalYonseiMAILab/medllama3-v20 - skumar9/Llama-medx_v3.2 --- # MedNarra-V1 MedNarra-V1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ProbeMedicalYonseiMAILab/medllama3-v20](https://huggingface.co/ProbeMedicalYonseiMAILab/medllama3-v20) * [skumar9/Llama-medx_v3.2](https://huggingface.co/skumar9/Llama-medx_v3.2) ## 🧩 Configuration ```yaml slices: - sources: - model: ProbeMedicalYonseiMAILab/medllama3-v20 layer_range: [0, 32] - model: skumar9/Llama-medx_v3.2 layer_range: [0, 32] merge_method: slerp base_model: ProbeMedicalYonseiMAILab/medllama3-v20 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "PranavHarshan/MedNarra-V1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```