|
import gradio as gr |
|
import numpy as np |
|
import tensorflow as tf |
|
from sklearn.neighbors import KNeighborsClassifier |
|
from sklearn.tree import DecisionTreeClassifier |
|
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier |
|
import joblib |
|
import pickle |
|
|
|
def fashion_MNIST_prediction(test_image, model='KNN'): |
|
test_image_flatten = test_image.reshape((-1, 28*28)) |
|
fashion_mnist = tf.keras.datasets.fashion_mnist |
|
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() |
|
class_names = ("T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot") |
|
img_shape = X_train.shape |
|
n_samples = img_shape[0] |
|
width = img_shape[1] |
|
height = img_shape[2] |
|
x_train_flatten = X_train.reshape(n_samples, width*height) |
|
|
|
if model == 'KNN': |
|
with open('knn_model.pkl', 'rb') as f: |
|
knn = pickle.load(f) |
|
ans = knn.predict(test_image_flatten) |
|
ans_prediction = knn.predict_proba(test_image_flatten) |
|
return class_names[ans[0]], dict(zip(class_names, map(float, ans_prediction[0]))) |
|
|
|
elif model == 'DecisionTreeClassifier': |
|
tree_model = joblib.load('tree_model.joblib') |
|
ans = tree_model.predict(test_image_flatten) |
|
ans_prediction = tree_model.predict_proba(test_image_flatten) |
|
return class_names[ans[0]], dict(zip(class_names, map(float, ans_prediction[0]))) |
|
|
|
elif model == 'RandomForestClassifier': |
|
best_model = joblib.load('best_model.pkl') |
|
ans = best_model.predict(test_image_flatten) |
|
ans_prediction = best_model.predict_proba(test_image_flatten) |
|
return class_names[ans[0]], dict(zip(class_names, map(float, ans_prediction[0]))) |
|
|
|
elif model == 'AdaBoostClassifier': |
|
best_estimator = joblib.load('best_adaboost_model.joblib') |
|
ans = best_estimator.predict(test_image_flatten) |
|
ans_prediction = best_estimator.predict_proba(test_image_flatten) |
|
return class_names[ans[0]], dict(zip(class_names, map(float, ans_prediction[0]))) |
|
|
|
elif model == 'GradientBoostingClassifier': |
|
best_estimator = joblib.load('best_gbc_model.joblib') |
|
ans = best_estimator.predict(test_image_flatten) |
|
ans_prediction = best_estimator.predict_proba(test_image_flatten) |
|
return class_names[ans[0]], dict(zip(class_names, map(float, ans_prediction[0]))) |
|
|
|
else: |
|
return "Invalid Model Selection" |
|
|
|
input_image = gr.inputs.Image(shape=(28, 28), image_mode='L') |
|
input_model = gr.inputs.Dropdown(['KNN', 'DecisionTreeClassifier', 'RandomForestClassifier', 'AdaBoostClassifier', 'GradientBoostingClassifier']) |
|
|
|
output_label = gr.outputs.Textbox(label="Predicted Label") |
|
output_probability = gr.outputs.Label(num_top_classes=10, label="Predicted Probability Per Class") |
|
|
|
gr.Interface(fn=fashion_MNIST_prediction, |
|
inputs=[input_image, input_model], |
|
outputs=[output_label, output_probability], |
|
title="Fashion MNIST classification").launch(debug=True) |