File size: 1,946 Bytes
33c427c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert_ENEM2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_ENEM2

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2449
- Accuracy: 0.3889

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 107  | 1.6035          | 0.2222   |
| No log        | 2.0   | 214  | 1.4424          | 0.4167   |
| No log        | 3.0   | 321  | 1.9931          | 0.4167   |
| No log        | 4.0   | 428  | 2.5895          | 0.3611   |
| 0.7932        | 5.0   | 535  | 2.2424          | 0.4167   |
| 0.7932        | 6.0   | 642  | 2.8100          | 0.3611   |
| 0.7932        | 7.0   | 749  | 3.1343          | 0.3611   |
| 0.7932        | 8.0   | 856  | 3.1998          | 0.3611   |
| 0.7932        | 9.0   | 963  | 3.1072          | 0.3611   |
| 0.0087        | 10.0  | 1070 | 3.2449          | 0.3889   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0