--- license: apache-2.0 datasets: - PrimeIntellect/fineweb-edu - PrimeIntellect/fineweb - PrimeIntellect/StackV1-popular - mlfoundations/dclm-baseline-1.0-parquet - open-web-math/open-web-math language: - en pipeline_tag: text-generation --- # INTELLECT-1-step-69200 This is an intermediate checkpoint of INTELLECT-1. You can find the [final version](https://huggingface.co/PrimeIntellect/INTELLECT-1) as well as the [instruct one](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) | | Step | Model URL | |---|------|-----------| | | 17000 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-17000 | | | 28600 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-28600 | | | 39200 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-39200 | | | 49200 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-49200 | | | 59200 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-59200 | | -> | 69200 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-69200 | | | 78000 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-78000 | | | 88000 | https://huggingface.co/PrimeIntellect/INTELLECT-1-step-88000 | ## **Model Overview** **INTELLECT-1** is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code. **INTELLECT-1** was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute. The training code utilizes the [prime framework](https://github.com/PrimeIntellect-ai/prime), a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers. The key abstraction that allows dynamic scaling is the `ElasticDeviceMesh` which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead. For more detailed technical insights, please refer to our [technical paper](https://github.com/PrimeIntellect-ai/prime). ## **Model Details** - **Model Contributors**: samsja, Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, _waiting__, toptickcrypto, sto, Johannes, washout_segment_0b, klee - **Release Date**: 29 Nov 2024 - **Model License**: Apache 2.0 ## **Technical Specifications** | **Parameter** | **Value** | |----------------------|------------------------| | Parameter Size | 10B | | Number of Layers | 42 | | Number of Attention Heads | 32 | | Hidden Size | 4096 | | Context Length | 8192 | | Vocabulary Size | 128256 | ## **Citations** If you use this model in your research, please cite it as follows: ``` @article{} ```