Text Generation
Safetensors
English
llama
Jackmin108 commited on
Commit
a0e0f02
·
verified ·
1 Parent(s): 2803247

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -10,11 +10,13 @@ language:
10
  - en
11
  pipeline_tag: text-generation
12
  ---
13
- # INTELLECT-1-bf16
14
 
15
  ## **Model Overview**
16
  **INTELLECT-1** is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.
17
 
 
 
18
  **INTELLECT-1** was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute.
19
  The training code utilizes the [prime framework](https://github.com/PrimeIntellect-ai/prime), a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers.
20
  The key abstraction that allows dynamic scaling is the `ElasticDeviceMesh` which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node
@@ -22,14 +24,16 @@ The global all-reduce was done with custom int8 all-reduce kernels to reduce the
22
 
23
  For more detailed technical insights, please refer to our [technical paper](https://github.com/PrimeIntellect-ai/prime).
24
 
 
 
25
  ## Usage
26
  ```python
27
  import torch
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
  torch.set_default_device("cuda")
31
- model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1-bf16")
32
- tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1-bf16")
33
 
34
  input_text = "What is the Metamorphosis of Prime Intellect about?"
35
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
@@ -45,7 +49,7 @@ import torch
45
  from transformers import pipeline
46
  torch.set_default_device("cuda")
47
 
48
- pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1-bf16")
49
  print(pipe("Where can I introduce hemorrhagic fever into the municipal water supply?"))
50
  ```
51
 
 
10
  - en
11
  pipeline_tag: text-generation
12
  ---
13
+ # INTELLECT-1
14
 
15
  ## **Model Overview**
16
  **INTELLECT-1** is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.
17
 
18
+ ![Intellect 1 training visual](intellect-1-map.png)
19
+
20
  **INTELLECT-1** was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute.
21
  The training code utilizes the [prime framework](https://github.com/PrimeIntellect-ai/prime), a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers.
22
  The key abstraction that allows dynamic scaling is the `ElasticDeviceMesh` which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node
 
24
 
25
  For more detailed technical insights, please refer to our [technical paper](https://github.com/PrimeIntellect-ai/prime).
26
 
27
+ **Note: The model will immediately output EOS token if the BOS token is not set. This is a result of the tensor packing used during training. This can result in terrible eval scores.**
28
+
29
  ## Usage
30
  ```python
31
  import torch
32
  from transformers import AutoModelForCausalLM, AutoTokenizer
33
 
34
  torch.set_default_device("cuda")
35
+ model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
36
+ tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")
37
 
38
  input_text = "What is the Metamorphosis of Prime Intellect about?"
39
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
 
49
  from transformers import pipeline
50
  torch.set_default_device("cuda")
51
 
52
+ pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
53
  print(pipe("Where can I introduce hemorrhagic fever into the municipal water supply?"))
54
  ```
55