# CLIP Sparse Autoencoder Checkpoint ## Model Overview This model is a sparse autoencoder trained on CLIP's internal representations. Pretrained on Imagenet and Finetuned on Waterbirds ## Architecture Details - **Layer**: 11 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49,152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: False ## Performance Metrics The model has been evaluated on standard metrics with the following results: - **L0**: 359 - **Explained Variance**: 0.85 - **MSE Loss**: 0.003 - **Overall Loss**: 0.008 ## Additional Information Detailed logs and visualizations of the model's fine-tuning process are available on **Weights & Biases**: [wandb.ai/perceptual-alignment/waterbirds-finetuning-sweep/runs/cxgrs9zt/workspace](https://wandb.ai/perceptual-alignment/waterbirds-finetuning-sweep/runs/cxgrs9zt/workspace) --- Feel free to reach out for any additional clarifications or details!