ProdicusII nikolamilosevic commited on
Commit
cfbedc0
·
1 Parent(s): 0c96eb6

Jos citat fali (#5)

Browse files

- Jos citat fali (1a59e5228a2be23eacf39907496277700a233259)


Co-authored-by: Nikola <[email protected]>

Files changed (1) hide show
  1. README.md +46 -1
README.md CHANGED
@@ -6,6 +6,8 @@ datasets:
6
  - jnlpba
7
  - bigbio/n2c2_2018_track2
8
  - bigbio/bc5cdr
 
 
9
  language:
10
  - en
11
  metrics:
@@ -28,7 +30,7 @@ Model takes as input two strings. String1 is NER label. String1 must be phrase f
28
  model outputs list of zeros and ones corresponding to the occurance of Named Entity and corresponing to the tokens(tokens given by transformer tokenizer) of the Sring2.
29
 
30
  ## Example of usage
31
- ```
32
  from transformers import AutoTokenizer
33
  from transformers import BertForTokenClassification
34
 
@@ -45,6 +47,49 @@ prediction_logits = model(**encodings)
45
  print(prediction_logits)
46
  ```
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ## Code availibility
49
 
50
  Code used for training and testing the model is available at https://github.com/br-ai-ns-institute/Zero-ShotNER
 
6
  - jnlpba
7
  - bigbio/n2c2_2018_track2
8
  - bigbio/bc5cdr
9
+ widget:
10
+ - text: Drug<SEP>He was given aspirin and paracetamol.
11
  language:
12
  - en
13
  metrics:
 
30
  model outputs list of zeros and ones corresponding to the occurance of Named Entity and corresponing to the tokens(tokens given by transformer tokenizer) of the Sring2.
31
 
32
  ## Example of usage
33
+ ```python
34
  from transformers import AutoTokenizer
35
  from transformers import BertForTokenClassification
36
 
 
47
  print(prediction_logits)
48
  ```
49
 
50
+ ## Available classes
51
+
52
+ The following datasets and entities were used for training and therefore they can be used as label in the first segment (as a first string). Note that multiword string have been merged.
53
+
54
+
55
+ * NCBI
56
+ * Specific Disease
57
+ * Composite Mention
58
+ * Modifier
59
+ * Disease Class
60
+ * BIORED
61
+ * Sequence Variant
62
+ * Gene Or Gene Product
63
+ * Disease Or Phenotypic Feature
64
+ * Chemical Entity
65
+ * Cell Line
66
+ * Organism Taxon
67
+ * CDR Disease
68
+ * Chemical
69
+ * CHEMDNER
70
+ * Chemical
71
+ * Chemical Family
72
+ * JNLPBA
73
+ * Protein
74
+ * DNA
75
+ * Cell Type
76
+ * Cell Line
77
+ * RNA
78
+ * n2c2
79
+ * Drug
80
+ * Frequency
81
+ * Strength
82
+ * Dosage
83
+ * Form
84
+ * Reason
85
+ * Route
86
+ * ADE
87
+ * Duration
88
+
89
+ On top of this, one can use the model in zero-shot regime with other classes, and also fine-tune it with few examples of other classes.
90
+
91
+
92
+
93
  ## Code availibility
94
 
95
  Code used for training and testing the model is available at https://github.com/br-ai-ns-institute/Zero-ShotNER