|
import io |
|
import os |
|
import math |
|
import time |
|
import json |
|
import glob |
|
from collections import defaultdict, deque, OrderedDict |
|
import datetime |
|
import numpy as np |
|
|
|
|
|
from pathlib import Path |
|
import argparse |
|
|
|
import torch |
|
from torch import optim as optim |
|
import torch.distributed as dist |
|
|
|
try: |
|
from torch._six import inf |
|
except ImportError: |
|
from torch import inf |
|
|
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def init_distributed_mode(args, init_pytorch_ddp=True): |
|
if int(os.getenv('OMPI_COMM_WORLD_SIZE', '0')) > 0: |
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) |
|
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) |
|
|
|
os.environ["LOCAL_RANK"] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] |
|
os.environ["RANK"] = os.environ['OMPI_COMM_WORLD_RANK'] |
|
os.environ["WORLD_SIZE"] = os.environ['OMPI_COMM_WORLD_SIZE'] |
|
|
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ["WORLD_SIZE"]) |
|
args.gpu = int(os.environ["LOCAL_RANK"]) |
|
|
|
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
|
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
args.dist_backend = 'nccl' |
|
args.dist_url = "env://" |
|
print('| distributed init (rank {}): {}, gpu {}'.format( |
|
args.rank, args.dist_url, args.gpu), flush=True) |
|
|
|
if init_pytorch_ddp: |
|
|
|
torch.cuda.set_device(args.gpu) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank, timeout=datetime.timedelta(days=365)) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, |
|
start_warmup_value=0, warmup_steps=-1): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_steps > 0: |
|
warmup_iters = warmup_steps |
|
print("Set warmup steps = %d" % warmup_iters) |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
iters = np.arange(epochs * niter_per_ep - warmup_iters) |
|
schedule = np.array( |
|
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) |
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
|
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def constant_scheduler(base_value, epochs, niter_per_ep, warmup_epochs=0, |
|
start_warmup_value=1e-6, warmup_steps=-1): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_steps > 0: |
|
warmup_iters = warmup_steps |
|
print("Set warmup steps = %d" % warmup_iters) |
|
if warmup_iters > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
iters = epochs * niter_per_ep - warmup_iters |
|
schedule = np.array([base_value] * iters) |
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
|
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def get_parameter_groups(model, weight_decay=1e-5, base_lr=1e-4, skip_list=(), get_num_layer=None, get_layer_scale=None, **kwargs): |
|
parameter_group_names = {} |
|
parameter_group_vars = {} |
|
|
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(kwargs.get('filter_name', [])) > 0: |
|
flag = False |
|
for filter_n in kwargs.get('filter_name', []): |
|
if filter_n in name: |
|
print(f"filter {name} because of the pattern {filter_n}") |
|
flag = True |
|
if flag: |
|
continue |
|
|
|
default_scale=1. |
|
|
|
if param.ndim <= 1 or name.endswith(".bias") or name in skip_list: |
|
group_name = "no_decay" |
|
this_weight_decay = 0. |
|
else: |
|
group_name = "decay" |
|
this_weight_decay = weight_decay |
|
|
|
if get_num_layer is not None: |
|
layer_id = get_num_layer(name) |
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
else: |
|
layer_id = None |
|
|
|
if group_name not in parameter_group_names: |
|
if get_layer_scale is not None: |
|
scale = get_layer_scale(layer_id) |
|
else: |
|
scale = default_scale |
|
|
|
parameter_group_names[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr": base_lr, |
|
"lr_scale": scale, |
|
} |
|
|
|
parameter_group_vars[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr": base_lr, |
|
"lr_scale": scale, |
|
} |
|
|
|
parameter_group_vars[group_name]["params"].append(param) |
|
parameter_group_names[group_name]["params"].append(name) |
|
|
|
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) |
|
return list(parameter_group_vars.values()) |
|
|
|
|
|
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None, **kwargs): |
|
opt_lower = args.opt.lower() |
|
weight_decay = args.weight_decay |
|
|
|
skip = {} |
|
if skip_list is not None: |
|
skip = skip_list |
|
elif hasattr(model, 'no_weight_decay'): |
|
skip = model.no_weight_decay() |
|
print(f"Skip weight decay name marked in model: {skip}") |
|
parameters = get_parameter_groups(model, weight_decay, args.lr, skip, get_num_layer, get_layer_scale, **kwargs) |
|
weight_decay = 0. |
|
|
|
if 'fused' in opt_lower: |
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' |
|
|
|
opt_args = dict(lr=args.lr, weight_decay=weight_decay) |
|
if hasattr(args, 'opt_eps') and args.opt_eps is not None: |
|
opt_args['eps'] = args.opt_eps |
|
if hasattr(args, 'opt_beta1') and args.opt_beta1 is not None: |
|
opt_args['betas'] = (args.opt_beta1, args.opt_beta2) |
|
|
|
print('Optimizer config:', opt_args) |
|
opt_split = opt_lower.split('_') |
|
opt_lower = opt_split[-1] |
|
if opt_lower == 'sgd' or opt_lower == 'nesterov': |
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'momentum': |
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) |
|
elif opt_lower == 'adam': |
|
optimizer = optim.Adam(parameters, **opt_args) |
|
elif opt_lower == 'adamw': |
|
optimizer = optim.AdamW(parameters, **opt_args) |
|
elif opt_lower == 'adadelta': |
|
optimizer = optim.Adadelta(parameters, **opt_args) |
|
elif opt_lower == 'rmsprop': |
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) |
|
else: |
|
assert False and "Invalid optimizer" |
|
raise ValueError |
|
|
|
return optimizer |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
log_msg = [ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append('max mem: {memory:.0f}') |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None): |
|
output_dir = Path(args.output_dir) |
|
if args.auto_resume and len(args.resume) == 0: |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint.pth')) |
|
if len(all_checkpoints) > 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint.pth') |
|
else: |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) |
|
print("Auto resume checkpoint: %s" % args.resume) |
|
|
|
if args.resume: |
|
if args.resume.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
|
model_without_ddp.load_state_dict(checkpoint['model']) |
|
print("Resume checkpoint %s" % args.resume) |
|
|
|
if ('optimizer' in checkpoint) and ('epoch' in checkpoint) and (optimizer is not None): |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
print(f"Resume checkpoint at epoch {checkpoint['epoch']}, the global optmization step is {checkpoint['step']}") |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
args.global_step = checkpoint['step'] + 1 |
|
if model_ema is not None: |
|
if 'model_ema' in checkpoint: |
|
ema_load_res = model_ema.load_state_dict(checkpoint["model_ema"]) |
|
print(f"EMA Model Resume results: {ema_load_res}") |
|
if 'scaler' in checkpoint: |
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
print("With optim & sched!") |
|
if ('optimizer_disc' in checkpoint) and (optimizer_disc is not None): |
|
optimizer_disc.load_state_dict(checkpoint['optimizer_disc']) |
|
|
|
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None, save_ckpt_freq=1): |
|
output_dir = Path(args.output_dir) |
|
epoch_name = str(epoch) |
|
|
|
checkpoint_paths = [output_dir / 'checkpoint.pth'] |
|
if epoch == 'best': |
|
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name),] |
|
elif (epoch + 1) % save_ckpt_freq == 0: |
|
checkpoint_paths.append(output_dir / ('checkpoint-%s.pth' % epoch_name)) |
|
|
|
for checkpoint_path in checkpoint_paths: |
|
to_save = { |
|
'model': model_without_ddp.state_dict(), |
|
'epoch': epoch, |
|
'step' : args.global_step, |
|
'args': args, |
|
} |
|
|
|
if optimizer is not None: |
|
to_save['optimizer'] = optimizer.state_dict() |
|
|
|
if loss_scaler is not None: |
|
to_save['scaler'] = loss_scaler.state_dict() |
|
|
|
if model_ema is not None: |
|
to_save['model_ema'] = model_ema.state_dict() |
|
|
|
if optimizer_disc is not None: |
|
to_save['optimizer_disc'] = optimizer_disc.state_dict() |
|
|
|
save_on_master(to_save, checkpoint_path) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0, layer_names=None) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
|
|
parameters = [p for p in parameters if p.grad is not None] |
|
|
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.) |
|
device = parameters[0].grad.device |
|
|
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
layer_norm = torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]) |
|
total_norm = torch.norm(layer_norm, norm_type) |
|
|
|
if layer_names is not None: |
|
if torch.isnan(total_norm) or torch.isinf(total_norm) or total_norm > 1.0: |
|
value_top, name_top = torch.topk(layer_norm, k=5) |
|
print(f"Top norm value: {value_top}") |
|
print(f"Top norm name: {[layer_names[i][7:] for i in name_top.tolist()]}") |
|
|
|
return total_norm |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self, enabled=True): |
|
print(f"Set the loss scaled to {enabled}") |
|
self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) |
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, layer_names=None): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
if update_grad: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters, layer_names=layer_names) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |