mplaza commited on
Commit
4c928e3
1 Parent(s): eb859f0

First commit

Browse files
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ pipeline_tag: text-classification
4
+ inference: false
5
+ language: pt
6
+ tags:
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # Prompsit/paraphrase-bert-pt
12
+
13
+ This model allows to evaluate paraphrases for a given phrase.
14
+
15
+ We have fine-tuned this model from pretrained "neuralmind/bert-base-portuguese-cased".
16
+
17
+ Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain.
18
+
19
+ # How to use it
20
+
21
+ The model answer the following question: Is "phrase B" a paraphrase of "phrase A".
22
+
23
+ Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text.
24
+
25
+ Resulting probabilities correspond to classes:
26
+
27
+ * 0: Not a paraphrase
28
+ * 1: It's a paraphrase
29
+
30
+ So, considering the phrase "logo ap贸s o homic铆dio" and a candidate paraphrase like "pouco depois do assassinato", you can use the model like this:
31
+
32
+ ```
33
+
34
+ import torch
35
+
36
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
37
+ tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-bert-pt")
38
+ model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-bert-pt")
39
+
40
+ input = tokenizer('logo ap贸s o homic铆dio','pouco depois do assassinato',return_tensors='pt')
41
+ logits = model(**input).logits
42
+ soft = torch.nn.Softmax(dim=1)
43
+ print(soft(logits))
44
+
45
+ ```
46
+
47
+ Code output is:
48
+
49
+ ```
50
+
51
+ tensor([[0.2137, 0.7863]], grad_fn=<SoftmaxBackward>)
52
+
53
+ ```
54
+
55
+ As the probability of 1 (=It's a paraphrase) is 0.7863 and the probability of 0 (=It is not a paraphrase) is 0.2137, we can conclude, for our previous example, that "pouco depois do assassinato" is a paraphrase of "logo ap贸s o homicidio".
56
+
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "neuralmind/bert-base-portuguese-cased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "Not Paraphrase",
14
+ "1": "Paraphrase"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "Not Paraphrase": 0,
20
+ "Paraphrase": 1
21
+ },
22
+ "layer_norm_eps": 1e-12,
23
+ "max_position_embeddings": 512,
24
+ "model_type": "bert",
25
+ "num_attention_heads": 12,
26
+ "num_hidden_layers": 12,
27
+ "output_past": true,
28
+ "pad_token_id": 0,
29
+ "pooler_fc_size": 768,
30
+ "pooler_num_attention_heads": 12,
31
+ "pooler_num_fc_layers": 3,
32
+ "pooler_size_per_head": 128,
33
+ "pooler_type": "first_token_transform",
34
+ "position_embedding_type": "absolute",
35
+ "problem_type": "single_label_classification",
36
+ "torch_dtype": "float32",
37
+ "transformers_version": "4.11.3",
38
+ "type_vocab_size": 2,
39
+ "use_cache": true,
40
+ "vocab_size": 29794
41
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff4e0b43c243a7e7668cee0be15c0e062f237164ed8393bfac8d5ad73397f15
3
+ size 435782829
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/home/mplaza/.cache/huggingface/transformers/eecc45187d085a1169eed91017d358cc0e9cbdd5dc236bcd710059dbf0a2f816.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "neuralmind/bert-base-portuguese-cased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5bc90de40c0c9489ac705d5176d0991e203c34e0c667b2630a0bdcdffe6854
3
+ size 2799
vocab.txt ADDED
The diff for this file is too large to render. See raw diff