run the official code for MountainCar-v0 3000000 step train
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-MountainCar-v0.zip +3 -0
- ppo-MountainCar-v0/_stable_baselines3_version +1 -0
- ppo-MountainCar-v0/data +99 -0
- ppo-MountainCar-v0/policy.optimizer.pth +3 -0
- ppo-MountainCar-v0/policy.pth +3 -0
- ppo-MountainCar-v0/pytorch_variables.pth +3 -0
- ppo-MountainCar-v0/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCar-v0
|
16 |
+
type: MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -138.00 +/- 31.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **MountainCar-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf3a33629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf3a3362a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf3a3362b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf3a3362b90>", "_build": "<function ActorCriticPolicy._build at 0x7bf3a3362c20>", "forward": "<function ActorCriticPolicy.forward at 0x7bf3a3362cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf3a3362d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf3a3362dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf3a3362e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf3a3362ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf3a3362f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf3a3363010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf3a3368300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701612626091294111, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAABFoQb9w6hE9+dG4vozLk7osc+6+SZ5RPM5cA7/0t9m6zT5kvk11hjwt/wK/R6AJPXCL4L6N+6M7ArHzvq8UhTrpgiu/Zd0+OwFVlr/r7DQ8Wm05v6R6DTpzXsm+BeT8POlWB78U0Hy9aranvjQC0rz4pYK+KBywPJv6ar50Ryg7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CXFg3tKIzndX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXFh5yU9pzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFiQLNOdodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFnPFNtZWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFqqWTot+dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXFvAD7qIKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFwob4rSWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFxwob4rSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFz5kK/mDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2CJGe+VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2ODaoMsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXF3Dc/MW5dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXF5gh8pkPdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXF5sTWXkYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKRrylN1ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSIAwPAgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSfhMrVfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTVdHDrJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTp4rz5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKYg6ltTDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKbrvb48EdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKfjcmBvrdX2UKGgGR8BowAAAAAAAaAdLxmgIR0CXKg1rZamodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKiIVuaWpdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKiaiKziTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKjxiG34LdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKlcMVk+YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKltw71ZldX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CXKmmv4dp7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKo4/eLvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKpF0PpY+dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXKqpS75EddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKsMOPNmldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKtGus90SdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXKtETxoZidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKyhhYvFndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKz1CPZIydX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CXK5xmCiAUdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXK/SgXdj5dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXLBRhMJyAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCXz19ORdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLEiGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHDLKV6edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHi4J/oadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLL3solUqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLMJ+DvmYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLOkAxSHedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLQn5BTn8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR2wFC9idX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXLTgoPTXrdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0CXLVtZFG5MdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXLcoBq9GrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLfW5paicdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXLj0l7dBTdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0CXLk3Ehq0udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLmkU9IPLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLnqT8pCsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLscEvCdjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLs62fChwdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLtyrgflqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxeYUnG9dX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLxN1hb4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL2QQcxTLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL3dvbXYldX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXL5DW9US7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL66STyJ9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMBneBQN1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMESxqwhXdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0CXMEKE384xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMIlI3BHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMJnaFmFrdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXMKk8RtgsdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMKbXpW3jdX2UKGgGR8BioAAAAAAAaAdLlWgIR0CXMMdiDujRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMMTvy9VWdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMOG5+YtydX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMOJEH+qBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMRIdlum8dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0CXMSf5ULlWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0CXMV66asp5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMbJD3M6jdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0CXMdq814xDdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXMiTN+so2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMlSA6MisdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0CXMlceKbazdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMnM2FWXDdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CXMp6XBxgidX2UKGgGR8BmwAAAAAAAaAdLtmgIR0CXMrAeq7yydX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXMsRL9MsZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMsgSvkimdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwnUDuBudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMyiOearndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM1xjawljdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM3L9MsYmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM67NSqEOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXNAua4MF2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fd89d134a63825e5e2f8b4d2bb02fe85d07f5af4a070f58eb74b9d7e31a753a
|
3 |
+
size 136770
|
ppo-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-MountainCar-v0/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bf3a33629e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf3a3362a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf3a3362b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf3a3362b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bf3a3362c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bf3a3362cb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf3a3362d40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf3a3362dd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bf3a3362e60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf3a3362ef0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf3a3362f80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf3a3363010>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bf3a3368300>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701612626091294111,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAABFoQb9w6hE9+dG4vozLk7osc+6+SZ5RPM5cA7/0t9m6zT5kvk11hjwt/wK/R6AJPXCL4L6N+6M7ArHzvq8UhTrpgiu/Zd0+OwFVlr/r7DQ8Wm05v6R6DTpzXsm+BeT8POlWB78U0Hy9aranvjQC0rz4pYK+KBywPJv6ar50Ryg7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CXFg3tKIzndX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXFh5yU9pzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFiQLNOdodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFnPFNtZWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFqqWTot+dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXFvAD7qIKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFwob4rSWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFxwob4rSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFz5kK/mDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2CJGe+VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2ODaoMsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXF3Dc/MW5dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXF5gh8pkPdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXF5sTWXkYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKRrylN1ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSIAwPAgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSfhMrVfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTVdHDrJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTp4rz5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKYg6ltTDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKbrvb48EdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKfjcmBvrdX2UKGgGR8BowAAAAAAAaAdLxmgIR0CXKg1rZamodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKiIVuaWpdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKiaiKziTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKjxiG34LdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKlcMVk+YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKltw71ZldX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CXKmmv4dp7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKo4/eLvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKpF0PpY+dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXKqpS75EddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKsMOPNmldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKtGus90SdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXKtETxoZidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKyhhYvFndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKz1CPZIydX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CXK5xmCiAUdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXK/SgXdj5dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXLBRhMJyAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCXz19ORdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLEiGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHDLKV6edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHi4J/oadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLL3solUqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLMJ+DvmYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLOkAxSHedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLQn5BTn8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR2wFC9idX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXLTgoPTXrdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0CXLVtZFG5MdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXLcoBq9GrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLfW5paicdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXLj0l7dBTdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0CXLk3Ehq0udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLmkU9IPLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLnqT8pCsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLscEvCdjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLs62fChwdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLtyrgflqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxeYUnG9dX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLxN1hb4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL2QQcxTLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL3dvbXYldX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXL5DW9US7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL66STyJ9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMBneBQN1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMESxqwhXdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0CXMEKE384xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMIlI3BHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMJnaFmFrdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXMKk8RtgsdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMKbXpW3jdX2UKGgGR8BioAAAAAAAaAdLlWgIR0CXMMdiDujRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMMTvy9VWdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMOG5+YtydX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMOJEH+qBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMRIdlum8dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0CXMSf5ULlWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0CXMV66asp5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMbJD3M6jdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0CXMdq814xDdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXMiTN+so2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMlSA6MisdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0CXMlceKbazdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMnM2FWXDdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CXMp6XBxgidX2UKGgGR8BmwAAAAAAAaAdLtmgIR0CXMrAeq7yydX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXMsRL9MsZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMsgSvkimdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwnUDuBudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMyiOearndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM1xjawljdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM3L9MsYmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM67NSqEOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXNAua4MF2dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 740,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True]",
|
60 |
+
"bounded_above": "[ True True]",
|
61 |
+
"_shape": [
|
62 |
+
2
|
63 |
+
],
|
64 |
+
"low": "[-1.2 -0.07]",
|
65 |
+
"high": "[0.6 0.07]",
|
66 |
+
"low_repr": "[-1.2 -0.07]",
|
67 |
+
"high_repr": "[0.6 0.07]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "3",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d75d91a4f3046f08e163332396072b65f6b9bd659fb8843677fbd8d652a93ac2
|
3 |
+
size 81706
|
ppo-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b476555b58c0f4d2d90372515fe48c7406ead135a72f2650a7856e7390a6ffdb
|
3 |
+
size 40434
|
ppo-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (207 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -138.0, "std_reward": 31.508728949292767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T14:26:15.881909"}
|